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Abstract

This research work is on the enhancement of Mueller matrix polarimeter. The
enhancement is achieved in two aspects- i) enhancement of accuracy and ii)
enhancement of time. In the first method, enhancement of accuracy is obtained by
calibration of the errors due to non-ideal retarders of a dual rotating retarder Mueller
matrix polarimeter. The dual rotating retarder polarimeter was proposed initially by
Azzam. It is composed of two rotating retarders and two fixed polarizers with the final
purpose of retrieving the Mueller matrix of a sample. As the Algorithm used for
calibration of the retardation and the azimuthal errors already exist, we propose to take
into account the diattenuation errors of the two retarders along with the retardance
errors. When the retarders of a dual rotating retarder polarimeter rotate at a rate of 5:1,
we can obtain the 25 coefficients by Fourier transform of the output signal. From this
Fourier coefficient, the Mueller matrix of the sample can be obtained. The calibration
for the retardance and diattenuation errors has been done by no sample experiment
method. As the Mueller matrix of air is known, the value of the retardance and
diattenuation can be retrieved from the Fourier coefficients of the output signal. The
algorithm has been described and the accuracy of the method has been tested with
supporting experimental results and then compared with other existing method also. In
the second method, enhancement of time is obtained by construct single shot Mueller
matrix polarimeter using the property of channelled spectrum and axially symmetric
quarter waveplate. A circular grating has been used here instead of conventional grating.
Mueller matrix polarimeter is constructed by modulating the polarizing state of the
input beam into polarizing state generator and also analysing the polarizing state of the
output beam by polarizing state analyser. This modulation is generally done by
modulation in the time domain, modulation in the spatial domain, modulation in the
spectral domain. But to construct a single shot Mueller matrix polarimeter using this
kind of modulation is a little difficult. Here we have proposed to construct a single shot
Mueller matrix polarimeter using the combination of spatial domain modulation and
spectral domain modulation of polarization. For spatial domain modulation of
polarization, an achromatic axially symmetric wave plate (AASWP) has been used.
Achromatic axially symmetric wave plate (AASWP) acts like a Fresnel rhomb and
introduces the phase differences between the two axes of the beam. Thus it behaves like

a retarder where retardance remains constant but the fast axis orientation varies over the



space. For spectral domain modulation, the theory of channelled spectrum has been
adopted and, therefore, two high order retarders and a polarizer have been used. When
broadband wavelength light passes through high order retarder, the retarder introduces
different phase for each wavelength. By using a grating, these wavelengths can be
separated, and modulation over the space can be measured. For the grating, a circular or
radial grating has been used. This is a tricky thing for this proposal. Generally, gratings
are linear or crossed, but here circular grating is used to separate the wavelengths

radially.
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Purpose

Mueller matrix is widely used not only in optical research, but also has an
implementation in biomedical and bio-optics research to analyze several physical
parameters such as the chiral nature of bio-molecules, sugar concentration of a solution,

three-dimensional characteristics of the chemical bond, cancer diagnosis, and many
others [1-15].

The research work is on the enhancement of Mueller matrix polarimeter;
enhancement of accuracy, and enhancement of time. For enhancement of accuracy, we
propose to calibrate the errors due to non-ideal retarders of a dual rotating retarder
Mueller matrix polarimeter. The algorithm has been described and the accuracy of the
method has been shown with supporting experimental results. For enhancement of time,
we propose to construct a single shot Mueller matrix polarimeter using the property of
channelled spectrum and axially symmetric quarter waveplate. A circular grating has
been used here instead of conventional grating. The proposed theoretical approach is

described with a supporting algorithm.

The research work is on the enhancement of Mueller matrix polarimeter. The
enhancement is achieved by two methods - enhancement of accuracy and enhancement

of time.

In the first method, enhancement of accuracy is obtained by calibrating the
errors due to non-ideal retarders of a dual rotating retarder Mueller matrix polarimeter.
The dual rotating retarder polarimeter was proposed initially by Azzam [1]. It is
composed of two rotating retarders and two fixed polarizers with the final purpose of
retrieving the Mueller matrix of a sample. *As the Algorithm used for calibration of the
retardation and the azimuthal errors already exist, we propose to take into account the
diattenuation errors of the two retarders along with the retardance errors. When the
retarders of a dual rotating retarder polarimeter rotate at a rate of 5:1, we can obtain 25
coefficients by Fourier transform of output signal. From this coefficient the Mueller

matrix of the sample can be obtained.

The calibration for the retardance and diattenuation errors has been done by no
sample experiment method. As the Mueller matrix of air is known, the value of the
retardance and diattenuation can be retrieved from the Fourier coefficients of the output

signal.
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The algorithm has been described and the accuracy of the method has been

shown with supporting experimental results with other comparative methods also.

In the second method enhancement of time is obtained by construct a single
shot Mueller matrix polarimeter using the property of channelled spectrum and axially
symmetric quarter waveplate. A circular grating has used here instead of conventional

grating.

Mueller matrix polarimeter is constructed by modulating the polarizing state of
the input beam in polarizing state generator and also analysing the polarizing state of the
output beam in polarizing state analyser. This modulation is generally done by
modulation in the time domain, modulation in the spatial domain, modulation in the
spectral domain. But to construct a single shot Mueller matrix polarimeter using this

kind of modulation is a little difficult.

Here we have proposed to construct a single shot Mueller matrix polarimeter
using the combination of spatial domain modulation and spectral domain modulation of

polarization.

For spatial domain modulation of polarization, an achromatic axially
symmetric wave plate (AASWP) has been used. Achromatic axially symmetric wave
plate (AASWP) act like a Fresnel rhomb and introduce phase difference between the
two axes of the beam. So that it behaves like a retarder where retardance remains

constant but the fast axis orientation varies over the space.

For spectral domain modulation, the theory of channelled spectrum has been
adopted and, therefore, two high order retarders and a polarizer have been utilised.
When broadband wavelength light passes through high order retarders, the retarders
introduce different phase for each wavelength. By using a grating, these wavelengths

can be separated and modulation over the space can be measured.

For the grating, a circular or radial grating has been used. This is a tricky
thing for this proposal. Generally, gratings are linear or crossed, but here circular grating

is used to separate the wavelengths radially.
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1. Introduction

Light is an electromagnetic wave. The electric and magnetic fields remain
perpendicular to the propagation of light. In practical cases, the magnetic field is
ignored as it does not hold any significant meanings. When the electric field remains in

a particular manner, the light is treated as polarized light.

1.1 Polarization of light

Under normal atmospheric conditions, it has been well established that
light can be treated as an electromagnetic wave. Light consists of both electric and
magnetic waves and therefore has inherent magnitude and phase for each. In terms of
the science of polarization and the property of light to be polarized, the magnetic vector
is ignored, as it holds no bearing on the polarization phenomenon. Therefore, in
discussing the principle of polarization only the electric field of light will be of value.
Light is also considered a transverse electromagnetic wave meaning that the medium is

displaced in a direction perpendicular to the motion of the wave.

When light is polarized only in the horizontal direction it is called horizontally
polarized (H), when in the vertical direction it is called vertically polarized (V). There
are many other kinds of polarizations viz. circular polarization (both left & right),
elliptical polarization, etc. And when the polarization state changes randomly, it is
termed as unpolarized light.

Natural light is termed unpolarized, which has been thought of as a misnomer.
Light always has a polarization state; however, natural light has a very fast oscillating
polarization state, and, therefore, it appears not to prefer any distinct polarization state.
It can be thought of as containing all polarization states over a very short period of time,

therefore, undetectable by modern detection systems.
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1.2 The Stokes parameter

The modern representation of polarized light actually had its origin in 1852 by G.
G. Stokes, who introduced 4 quantities that are functions only of observables of the

electromagnetic waves and known as Stokes parameters; they are So, Si1, Sz, &S3.

Mathematically, light can be thought of as two orthogonal electric waves
oscillating at the same frequency. The set of equations (1) below describes the electric
field of monochromatic light propagating in free space (which is by definition

polarized). The relation between Stokes vectors and Mueller matrix is shown in Fig. 2.1.

Ex = Eox exp(ib)

. 1.1
Ey= Eoy exp(i6)
Sy ENVA ) S,
Sout = Ms Sin
Fig. 2.1 Relation between output and input stokes vector
The Stokes parameters are defined by the following equations,
So ng + Egy I
S = Sl _ ng_Egy _ IH_IV
Sz 2 EgyEqy cos 8 Ip = Iy 1.2
53 2 EgyEqy sin & / I =1

Where I is the measured intensity value, So is the total detected light
intensity, of which S; is the portion that corresponds to the difference between linear
horizontal and vertical polarization states, S» is the portion that corresponds to the

difference between the linear +45° and —45° polarization states, and S is the portion that

20



corresponds to the difference between the right circular and left circular polarization
states. In this equation, I is the detected intensity represented with a subscript for the
polarization type it represents (H=horizontal, V=vertical, P= +45°, M=45° R= right
circular, and L= left circular). These measured intensities translate into the Stokes

values. All of the values lie between -1 and 1.

The relation between stokes parameters is,
So2=> S12 + Sg2+ S32 1.3

Where the = and > indicate completely and partially/depolarized light.
The Depth of Polarization (DOP) is defined as,

JSTHSERS L

DOP =
So

The DOP is 1 for completely polarized light, zero for totally depolarized light, and

assumes a fractional value for any case in between.

The optical states of Stokes vectors are shown in Fig. 2.2.
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1.3 MUELLER MATRIX

In 1943, Hans Mueller developed a matrix that relates the Stokes vector of the
light impinging on a sample to the Stokes vector leaving the sample. Using the method
with the input and output polarization states (Stokes vectors) known, the 4x4 Mueller
matrix can be used to describe the polarization properties of a sample. This relationship
is shown below in where M is the Mueller matrix and Sout and Si are the output and

input Stokes vectors respectively.

Sout = M. Sin 1.5

So my; My Myz My [So

S1 _ [M21 M3z Maz Mas| S1 16

S, mz1 Mz Mzz Mzy| |S, :
m m m m

Sal e 41 42 43 a4d 831

Mueller matrix information is arranged in a 4x4 matrix which describes the
optical properties of an element. The Mueller matrix can be decomposed in three
polarization properties known as diattenuation, retardance and depolarization and each

of these with its own more specific properties [6,7].

The Mueller matrix parameters are shown in Fig. 2.3.

Circular diattenuation
_ Birefringence
Mg = g

Depolarization

Fig. 2.3 Muller matrix parameters

23



Each of these properties can be associated on physical properties of the sample,
only to mention some: The linear and circular diattenuation can be associated with the
scattering and chirality measurement; the circular retardance is helpful for glucose
measurement; birefringence can be associated with stress analysis and from

depolarization properties some cancer diagnosis can be done [7,8].

Mueller matrix is widely used not only in optical research, but also has an
implementation in biomedical and bio-optics research to analyze several physical

parameters such as chiral nature of bio-molecules, sugar concentration of a solution,

three dimensional characteristics of the chemical bond, cancer diagnosis, and many
others [9-15].

The parameters that we can measure by Mueller matrix are:

e Depolarization, from which cancer can be detected.

e Linear diattenuation, used for scattering measurement.
e Birefringence, commercially used for stress analysis.
e Circular retardance, used for glucose measurement.

e Circular diattenuation, used for chirality analysis.

The optical parameters and the physical parameters obtained from these are shown in Fig. 2.4.

24



Stress analysis Glucose measurement

Birefringence Circular retardance

Scattenng measurement Charality analvsis

Linear diattenuation Mueller Matrix Circular diattenuation

Depolarization

Canecer diagnosis

Fig. 2.4 Physical properties of Muller matrix parameter
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2 Mueller matrix Polarimeter

Mueller matrix polarimeter is a device that measures the Mueller matrix of a
sample using polarizing state generator (PSG) and polarizing state analyzer (PSA).
Polarizing state generator creates various states of polarization of the input beam,

whereas polarizing state analyzer analyzes various states of polarization.

Mueller matrix polarimetry is an experimental technique to determine the
optical properties of a sample by measuring its Mueller matrix. It measures the Mueller
matrix of the sample by producing various polarization states in the input beam and

analyzing various states of the output beam.

Several Mueller matrix polarimeter designs can be found in the literature, the
main difference is in the polarization state generator/analyzer composition, i.e. dual
rotating retarders [1,2], couple phase modulators [3] and liquid crystal devices [4,5].
More specifically, in the dual rotating retarder implementation, a fixed polarizer and a
rotating retarder compose the polarization state generator (PSG) to produce various
polarizing state in the input, and a rotating retarder and a fixed analyzer in the polarizing

state analyzer (PSA) to detect various polarization state at the output beam[1,2].

A simple layout of Mueller matrix polarimeter has been shown below Fig.2.5:

Polarizing State Sample Polarizing State
Generator P Analyzer

Fig. 2.5 Block diagram of Mueller matrix polarimeter.
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2.1 Motivation and challenges

Mueller matrix is widely used not only in optical research, but also has an
implementation in biomedical and bio-optics research to analyze several physical
parameters such as chiral nature of bio-molecules, sugar concentration of a solution,

three-dimensional characteristics of the chemical bond, cancer diagnosis, and many
others [9-15].

The research work is on the enhancement of Mueller matrix polarimeter;
enhancement of accuracy and enhancement in time. For enhancement of accuracy, our
proposal is to calibrate the errors due to non-ideal retarders of a dual rotating retarder
Mueller matrix polarimeter. The algorithm has been described and the accuracy of the
method has been shown with supporting experimental results. For enhancement in time,
our proposal is to construct a single shot Mueller matrix polarimeter using the property
of channelled spectrum and axially symmetric quarter waveplate. A circular grating has
been used here instead of conventional grating. The proposed theoretical approach is

described with a supporting algorithm.

27



2.2 Relationship to existing approaches

Several Mueller matrix polarimeter can be found in the literature, the main
difference is in the polarization state generator/analyzer composition, i.e. dual rotating
retarders [1][2], couple phase modulators [3] and liquid crystal devices [4][5]. More
specifically, in the dual rotating retarder implementation, a fixed polarized and a
rotating retarder composes the polarization state generator (PSG) to produce various
polarizing state in the input, and a rotating retarder and a fixed analyzer in the polarizing

state analyzer (PSA) to detect various polarization state at the output beam[1][2].

Mueller matrix is widely used not only in optical research, but also has an
implementation in biomedical and bio-optics research to analyze several physical
parameters such as chiral nature of bio-molecules, sugar concentration of a solution,

three dimensional characteristics of the chemical bond, cancer diagnosis, and many
others [6-12].

Mueller matrix information is arranged in a 4x4 matrix which describes the
optical properties of an element. The Mueller matrix can be decomposed in three
polarization properties known as diattenuation, retardance and depolarization and each
of these with its own more specific properties [13]. Each of these properties can be
associated on physical parameters of the sample, only to mention some: The linear and
circular diattenuation can be associated with the scattering and chirality measurement;
the circular retardance is helpful for glucose measurement; birefringence can be
associated with stress analysis and from depolarization properties some cancer

diagnosis can be done [14][15].

To increase the accuracy of a polarimeter, it is necessary to compensate the
errors caused by some of the components used. The systematic errors can be caused due
to the retardance and diattenuation properties of the components, non-uniform rotation
of retarders stage, intensity fluctuation of the light source, the broadband wavelength of
the light, the wavelength dependency of the retarders, etc. Several researches have
already been done to compensate most of these errors [16-21]. Generally, retarders’
properties are the main source of errors that can be compensated by taking a non-ideal

component.
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3 Enhancement of accuracy of Mueller matrix polarimeter

To increase the accuracy of a polarimeter, it is necessary to compensate the
errors caused by some of the components used. In the dual rotating retarder Mueller
matrix measurement method, the systematic errors can be caused due to the retardance
and diattenuation properties of the components, non-uniform rotation of retarders stage,
intensity fluctuation of the light source, the broadband wavelength of the light, the
wavelength dependency of the retarders, etc. Several researches have already been done
to compensate most of these errors [16-21]. The dual rotating retarder polarimeter was
initially proposed by Azzam in 1978 [1]. The calibration for retardance and azimuthal

errors of this system was done by Goldstein and Chipman in 1990 [16]. After this, some
more calibration has been done [18-20].

Generally, the main source of error occurs due to non-ideal retarder which
needs to be compensated. Although retarder is considered as a wave plate, sometimes it
has diattenuation value that can cause errors for precise and high accurate measurement
to study the polarization properties of the sample. Our proposed method is to
compensate the diattenuation and retardation errors of the retarders to enhance the

accuracy of the system that has been presented with supporting experimental results.

In addition, to do enhancement in time of Mueller matrix polarimeter, our
proposal is to construct a single shot Mueller matrix polarimeter using the property of
channelled spectrum and axially symmetric quarter waveplate [23][24]. A circular
grating has used here instead of conventional grating. The proposed set up has been

described with a supporting algorithm.

Here we have proposed to construct a single shot Mueller matrix polarimeter using the
combination of spatial domain modulation and spectral domain modulation of

polarization.

For spatial domain modulation of polarization, an achromatic axially
symmetric wave plate (AASWP) has been used [24]. Achromatic axially symmetric

wave plate (AASWP) act like a Fresnel rhomb and introduce phase difference between
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the two axes of the beam. So that it behaves like a retarder where retardance remains

constant but the fast axis orientation varies over the space.

For spectral domain modulation, the theory of channelled spectrum has been
adopted [23] and thus two high order retarders and a polarizer have been used. When
broadband wavelength light passes through high order retarder, the retarder introduces
different phase for each wavelength. By using a grating these wavelengths can be

separated and modulation over the space can be measured.

For the grating, a circular or radial grating has been used. This is a tricky thing for this
proposal. Generally, gratings are linear or crossed, but here circular grating is used to

separate the wavelengths radially.

The two methods have been used for the enhancement of Mueller matrix polarimeter

is shown in Fig. 2.6.
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Enhancement of
Mueller matrix
polarimeter

Enhancement
in Time

Enhancement
in Accuracy

Fig. 2.6 Two ways have been used for enhancement of Mueller matrix polarimeter
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3.1 Dual-Rotating Retarder Polarimeter

The dual rotating retarder polarimeter, Fig3.1, consists of a polarization state
generator (PSG) and a polarization state analyzer (PSA), each composed by a fixed
polarizer (Mp,M,) and a rotating retarder (Mgr(6), Mr(56) respectively). When the
retarder of the PSA and the PSG rotates with an angular velocity 5:1, its output signal
generates 12 harmonic frequencies in the Fourier spectrum. The Mueller matrix

elements of the sample are retrieved from its Fourier complex coefficients [1] [2].

PSG PSA
) A

A Y

R4

A=632.515 nm
Tungsten Beam Collimator Optical Polarizer Retarder Sample Retarder  Analyzer cch
Halogen  expander filter M, Mg(0) M M¢(50) M,

Light
Fig 3.1 Dual rotating retarder polarimeter.

The output stokes vector will be:

So

S
Sout = s; = [My Mg (50)MgMp(6)M,] - Sin 3.1

S3 out
Where Ms is the Mueller matrix of the components, 6 and 56 is the rotation of the PSG
and PSA retarder respectively. Mr(6) is the Mueller matrix of a quarter-wave retarder

oriented at an angle 6, and Mp and M, is the Mueller matrix of a horizontally linear
polarizer, given by [22]:
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1 0 0 0

10 cos?20  sin26 cos26 —sin26
Mg (6) = 0 sin20 cos20  sin?20 c0s26 3.2
0 sin26 —cos26 0
1 1 0 O
Mp =M, = (1) (1) 8 8 3.3
0 0 0 O

By making the matrix multiplication with the Mueller matrix of the sample, Eq. (3.1),

the output intensity captured by the detector can be represented as:

Soout = H11Mqq + U12Myp + fygMyz + oo eee e T UagMyy 3.4

Where m;; are the elements of Mueller matrix of the sample, and p;; are the

corresponding coefficients dependent on the angular position of the retarder 6, the

output intensity can be expressed in the form of a Fourier series as:
12
Soout = Qo + Z(a” cos2nd + by, sin2nf) 3.5

n=1

Where a, and b, are the real and imaginary Fourier coefficients.
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From the inverse calculation, the elements of the Mueller matrix of the sample

are successfully determined by [1][2]:

my, = (ao— a; + ag— a0t a12)
mqp = 2(“2 — Qg — a12)
my3 = Z(bz + bg — b1z)
Mmyy = (b1 + by — b11)
my1 = 2(a10 — dag — a12)
Moy = 4( ag + alz)

mp3 = 4( by — bs)

Mypy = 4( by, — b9)

mzq = (b1o — bg — b12)
ms, = 4(bg + byy)

mzz = 4( ag — a12)

Mgy = 2(‘19 - a11)

myy = (b3 + by — bs)
myy = —2( b3 + by)

My3 = 2(a7 - a3)

Myy = (‘16 - ‘14)

3.6
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3.2 Implementation of diattenuation error

The dual rotating retarder polarimeter, Figure 3.2, consists of a polarization
state generator (PSG) and a polarization state analyzer (PSA), each composed by a fixed
polarizer (Mp,M4) and a rotating retarder (Mr(6), Mr(56) respectively). When the
retarder of the PSA and the PSG rotates with an angular velocity 5:1, its output signal
generates 12 harmonic frequencies in the Fourier spectrum. The Mueller matrix

elements of the sample are retrieved from its Fourier complex coefficients [4] [5].

The errors due to non-ideal quarter-wave retarders and the azimuthal angles of
the retarders and analyzer have been addressed before [5][7]. Our approach is to take
into account the errors due to the diattenuation of the retarders only, retardance values

are obtained using Goldstein-Chipman-algorithm for complementation of the model.
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Figure 3.2. Dual rotating retarder polarimeter with diattenuation and retardation error of the retarder.

To get the Mueller matrix of the retarder with non-zero diattenuation
characteristics, (Tmax, Tmin), and linear retardance ¢, its Mueller matrix is constructed by
the matrix multiplication of a linear diattenuator, M’p (6, Tmax, Tmin) With a linear

retarder M 'r(6, ¢) given by [6][8]:

M'rp (0, ), Trnaxs Tmin) = M'gM'y, = M'p M’y =

(Trnax + Tonin) (Tax — Tynin)c0s26 (Tax — Tynin)Sin26 0
(Tax = Tmin)€0520  (Tyax + Trnin)€05226 + sin?20c0s¢ 2./IL,  (Trax + Tonin — €05® 24/ Trgx Tmin )Sin26 c0520  —sin20sing 2./ Trax Trnin (3 7)
(Trnax = Tmin)$in20  (Tnax + Tonin — €05 2,/T1,)sin26 c0520 (T + Trin)Sin?20 + c05720¢05¢ 2y Trngx Tuin c05205in¢ 2/ Trax Tmin
0 5in205in$ 2/Trgy Trin —¢05205in¢ 2/ T Tmin €05¢ 27/ Trnax Trnin
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Where, Tmax and Tonin are the maximum and minimum intensity transmittance of
diattenuation, ¢ is the retardance of the retarder and # is the angular orientation of the
fast axis. By using the same procedure in the first sections, Eq. (1) and (3), but with the

non-ideal retarders, its corresponding output Stokes vector will be given by:

Slout = [MA M,RD (ng ¢2' TmaxZ' TminZ)MSM,RD (9, ¢1: Tmaxl! Tminl)Mp] ' Sin (38)
And

S'oout = WiaMyq + WipMyp + fizmyz + e eee e + W aaMyy (3.9)

Just as previously explained, Eq. (3.9), m;; are the elements of the Mueller
matrix of the sample and u';; are the corresponding coefficients dependent on the
angular position of the retarder 6. The output intensity can be expressed in the form of a

Fourier series as [4][5]:
12

S 0 out = Ao + Z(an cos2n@ + by, sin2nf) (3.10)
n=1

Following the same procedure explained in the introduction, where the Mueller
matrix multiplication is done using Eq. (3.7-3.10), the Mueller matrix elements of the
sample can be retrieved by the inverse calculation of the Fourier complex coefficients.
In this case, the Mueller matrix coefficients will be dependent on diattenuation and

retardation parameters of the retarders.

= ————[aB1a0 — auP1a; + (4B + axf5 — axf4) ag — azfy ayo + (@4fy + a3 — azf) ay,]
P1 P22

2
my, = @(.81“2 — Brag — Bra12)

= b, + azbg — asb
my3 @, (a;b, + azbg — azb;,)
! (b +2“3b)
m = -
Y sinduppz \ 1 ay (.11)
P24q1

- Sinby Py Pataty Pty [2 py p2aiby + (4 p1 P2 — @y)asbg + azazbig — azasby,]

2
mp1 = M (Bra1o — Bsag — B3a12)

4
my, = —(ag + a;)

B

36



_ 4 p1 D2 2p, g4
sind,a1p,7; K Sindaqa;p,24

[(4 1 P2 — @s)bg + azbyg — ayuby,]

myy = —— (b1 — aubg — asbyy)
a0,

4 p1p;
Mg, = b, +b
32 @, (by 8)
D1D2
Mm33 = (ag —as3)
102
41 D2
M3y

sind,a,p,2;

2p, 1

- m [Qajay + 2 py p2fi — axf3)ag + azf; aro — (2 Py P2B1 + a2f3 — 2a103)a4,]

_ 1 (2a4b b )
i sindopizz \ay °

_ P19z
sind, p1 P21, P12

[aiaub; + azaubg — 2 pipaazbig + (4 1Pz — az)asby,]

4p1 P2 2p1q2

My, = — ab, + azbg + (4 —a3)b

42 Sind,a, p17, 7 sind,a,a, P1ZZ[ 102 sbg + (4P p2 3)b12]
M = 4 p1p2

3 sind,a; p12; 7

- % [a1By a; — (a1, + 2a1a; — 2 py p2fi)ag + (2 py P21 + 2a10, — a1 85)a4,]
sindya a; p17:64
1 4p1q, 4 q,p, 4 p1P29192

m =—\|(ag —a,) + ag — a, + ag —a

44 Sin¢1sin¢22122 ( 6 4) a, 9 a, 7 a,a, ( 8 12)

2q.q;,

P [aiB1 a; — (a1, + 4aya; — ayf3)ag — ayfy aro + (41 P21 + @23 — a1 82)as,]
102P1

37



For conveniences the parameters obtained were reduced by these relations:

Tnax1 + Tmin1 = P1 Tmax2 + Tininz = P2
Tnax1 = Tmin1 = @1 Tmax2 = Tminz = 42
2\Trmaxi Trnint = 21 2\ TrmaxzTminz = 22
a; = p1(py — cosd,z,) B1 = P1P2 — D2€0S$121 — p1COSP,2; + cOSP1c05D, 242,
a; = po(p1 — cosd,z;) Bz = P1P2 — P2€05P121 + P1COSP22; + cOSP1c05D,2, 2, (3.12)
az = p1(py + cosdyz,) Bz = D1P2 + P2€05P12; — P1COSP22; + cOSP1C05D,2, 2,
a; = pa(py + cosd,z;) Ba = P1p2 + P2c0Sd121 + p1c0SD,2, + cOShicosd, 212,

Were Traxt » Tmini » Tmax2andTnine as the maximum and minimum intensity
transmission, ¢;and¢, as the retardance of polarizing state generator and polarizing

state analyzer retarder respectively.

The diattenuation (D = M) of the PSG and PSA retarders can be represented as:

maxtTmin

_4
P1

%

D =
! |%)

D, (3.13)

To calibrate the Mueller matrix polarimeter, the error constants of the proposed

model can be retrieved by taking into account a no-sample measurement. In this case,
the Mueller matrix can be taken ideally as an identity matrix and its corresponding

output Stokes vector is given by:

S oout = M1+ 1o+ Waz+ 1y (3.14)

Where  p'11, 22, 1433 and 1t 44 are the same equation parameters obtained in Eq. (3.9). The

error constants can be retrieved from the Fourier coefficients:
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Dj and D; are the diattenuation of the PSG and PSA retarders respectively. The
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retardance of the retarder cannot be detected by this algorithm. To detect the retardance

of the retarders we have used the Goldstein-Chipman-algorithm [5][7].
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3.2.1 EXPERIMENTAL RESULTS

Experiments were done by using a tungsten halogen light source and a narrow

band-pass filter of wavelength 632.5+5 nm. By using a /4 bit CCD camera
(Thorlab-8050M-GE-TE), 36 images were taken covering a rotation of 180 degree,

where each image was averaged by 20 frames for reducing noise. The obtained Mueller

matrix by experiment is given below for various samples.

The average Mueller matrix value of /0x170 pixel at the center for various

samples were measured and presented in Table 3.1. The results are compared with both

the Goldstein-Chipman-algorithm [5][7] and our proposed algorithm.

Table 3.1. Experimental result of the Mueller matrix for various objects. Result obtained by two

algorithms has shown with the theoretical values and without calibration result.

Theoretical Goldstein-Chipman
Sample Without calibration Proposed algorithm
values algorithm
100 0 1.000 0.000  —0.003 0.000 1.000 0.004 —0.008 0.000 1.000 0.004 —0.003 —0.003
No Sample 0100 0.049 0947 0001 0.008 0.004 0988 —0.015 0.008 0.004 0994 0001  0.014
P 0010 —0.009 —0.006 0.963 0.002 0001 0.010 1005 0.002 -0.009 —0.006  1.005 0.000
0001 —0.001 0.007 0.005 0.987 —0.001 0.007 0.005 0.988 0.003  0.000  0.003 1.002
Quarter 10 00 1.000 —0.043 0.011 0.006 1.000 —0.052 0.012 0.002 1.000 —0.052 0.011 0.002
01 00 -0.031 0997 0.014 -0.012 —0.098 1067 0.018 —0.006 -0.094 1.063 0.015 —0.004
000 -1 0.005 —0.008 0.007 —0.982 0.006 —0.003 0.008 —0.986 0.006 —0.008 0.008 —0.996
Wave Plate 001 0 0.003 —0.010 0930 0.008 0.006 —0.014 0989 0.008 0.000 —0.004 0983 0.015
Linear
1100 1.000 0.943 0.036 0.004 1000 1.064  0.045 0.004 1.000 1.056 0.040 —0.019
Polarizer 1100 1.032 0922  —0.004 0013 1048 1.062  —0.001 0.014 1.040 1.055 —0.005 0.061
0000 -0.017 0.092 —0.091 -0.068| |-0.018 0.112 —0.104 —0.074 -0.024 0.105 -0.103 —0.063
0000 -0.005 -0.026 0.025 —0.006d l-0.008 -0.032 0029 -0.007 —0.028 0.037 0032 —0.007
(Horizontal)
Linear
1 -10 0 1000 —0.969 —0.042 0.004 7| 1 1.000 —0.971 —0.044 0.004 1.000 —0.977 —0.040 0.004
Polarizer -1 1 0 0f|[-0980 0966 0043 —0.004| |-0.981 0968 0.044 —0.005 —-0.986 0973  0.041 —0.005
0 0 00 0012 —0.017  0.010 0.047 0.006 —0.016 0.013 0.045 0012 —0.016 0.012 0.038
i o o o ol|l-0006 0007 0015 0009 I L-0.007 0008 0014 0.008 -0.004 0.002  0.000 0.008
(Vertical)

To show the imaging capability and accuracy of the implemented system, the

spatial distribution of Mueller matrix Fig 3.3(a) and its line profile along Y-axis Fig

3.3(b) for no sample measurement has been shown.
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(a) The Mueller matrix image for no sample. (b) Line profile of Mueller matrix along the central Y-axis
(Marked in image m44).
Figure 3.3. Experimental images obtained for no sample. The Mueller matrix images and its

one dimensional line profile along central Y axis has shown for the variation obtained.

Taking a quarter waveplate as a sample, its corresponding Mueller matrix
images are presented in Fig 3.4(a) and its line profile along Y axis in Fig 3.4(b). All the
line profiles are taken in the same position, which shows noise in the same position.
This noise is due to the dust particles on the surface, improper polarizing property of the
sample and defocus obtained by the imaging system. In these parts, the authors are

urrently working to improve it.
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(a)The Mueller matrix image for QWP. (b) Line profile of Mueller matrix along the central Y axis

(Marked in image m44).
Figure 3.4. Experimental images obtained for a quarter waveplate (QWP) as a sample. The Mueller

matrix imaging capability of the system, its line profile along the central Y axis has shown.
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3.2.2. CONCLUSIONS

We presented a calibration for diattenuation error of dual rotating retarder
Mueller matrix polarimeter. The main objective is to compensate the diattenuation error
of the retarders. To apply this algorithm it is necessary to minimize the azimuthal error
of the retarders as well as a polarizer. An increment of accuracy is obtained by the
proposed method. By the moment our proposal is capable to retrieve the diattenuation

parameters, but it needs to be complemented with the Goldstein-Chipman-algorithm.
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3.3Implementation of retardance and diattenuation error

The basic concept of dual rotating retarder polarimeter is to produce different
polarizing states of the input beam, by a fixed polarizer followed by a rotating retarder,
while detecting the polarization states of the output beam by a rotating retarder followed
by a fixed analyzer. Depending on the rotation ratio of speeds of the retarders of the
PSA and PSG ratio of the retarders, the Mueller matrix information can be retrieved by
the harmonics of the signal. In the case of 5:1, 12 harmonics are generated. By using
Fourier analysis on the signal dependence by the rotation ratio, Mueller matrix
information of the sample can be retrieved [1,2]. By considering non-ideal components,
calibration procedures can be implemented by taking into account the output signal
variation due to these characteristics. In our approach, linear diattenuation

characteristics were added along with the retardation characteristic of the retarders used.

Considering the maximum and minimum intensity transmittance of the retarder
as Tmax and Thuin, the linear diattenuation parameter of the retarder can be defined as:
D= Tmax — Trin 3.16
Tmax + Tmin
Therefore, the diattenuation property of retarders can be modeled as Tu. and

Tmin 1n its corresponding Mueller matrix of each retarder.

According to the decomposition of Mueller matrix, any Mueller matrix of a
non-depolarizing element can be decomposed in diattenuation and retardance Mueller
matrix [6]. By considering retarder as a non-depolarizing element, it can be said that the
product of retardance Mueller matrix (M) and diattenuation Muller matrix (Mp) will
give the Mueller matrix of retarder (Mgrp) which has both retardance and diattenuation.

For simplicity here we have considered only linear retardance and linear diattenuation.

MRD(Hr 8, Tmaermin) = MgMp = MpMpg 3.17
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Therefore,

T, 7, C 7,8 0
M. = |72 C 7,C?% + S%cosét3 (11 — c0s813)S C  —S sindt;
RD 7,85 (14 — cos813)SC 1, 5%+ C%cosdt;  C sindt;
0 S sindt; —C sindt; c0s061; 3.18

T1 = Tax + TiminT2 = Tnax — TrminTs = 2\/ TnaxTmin
C = cos260S = sin26

Where (Here or where?) & and 0 are considered to be the retardance and orientation of the fast
axis. For simplicity on the calculation, the orientation of both retardance and the
diattenuation are considered equal. The Mueller matrix of the retarder will now depend
on not only on the orientation angle, but it will also depend on its retardance and

diattenuation parameter.

The setup of the polarimeter considering the retarders containing retardance and

diattenuation errors is presented in Fig. 3.5. Where the output Stokes vector is S, and

T,

:

L O

A=632.5+5 nm
Tungsten ~ Beam  Collimator Optical Polarizer Retarder Sample Retarder  Analyzer cchD
Halogen  expander filter

Light

the input stokes vector is Sin.

Figure 3.5 Dual rotating retarder polarimeter with diattenuation and retardation error of the retarder.
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The output Stokes vector (Sous) can be retrieved by multiplying the Mueller
matrix of the elements with the input stokes vector (8i,). The rotational angles of the
PSG and PSA retarders are € and 5. Mpgp carries the calibration parameters of the

retarder that later will be retrieved. (Space be given before Mxp)

SO SO

Stl (M, Mgy (56,6, T MgMgp (0,84, T, T M]3

S, —[ 4 Mgp (50,82, Tiaxz, Tmin2)MsMgp (0, 61, Tmax1, Tmin1) p] S, 3.19
S3 out S3 in

Where (Here or Where?) we consider the Mueller matrix of the PSA and PSG retarders as
Mgrp(56) and Mrp(6) respectively, M; is the same of the sample under study and M,, and

M, as the analyzer and polarizer respectively. (Space be given after My)

M. = 3.20
ST M3z Mgy Mzz Mgy

Ms 1is considered to be the unknown Mueller matrix of the sample.

45



3.4Construction of Mueller matrix of the sample with errors
compensation

By following the cascade matrix multiplication (Eq.3) of each Mueller matrix
of the polarimeter, the output Stokes vector can be treated as a function of the Mueller
matrix coefficients associated with the errors and the rotational angle of the retarders.
As the errors of the retarders and the Mueller matrix coefficients are constants, therefore
the output signal will vary only due to the rotation of the retarders. Hence the output
signal will be periodic and it can be represented as a Fourier series. The Mueller matrix
of the sample can be retrieved as the function of the complex Fourier coefficient of the

output signal and the error parameters.

The first component of the output Stokes vector gives the output intensity of
the output signal. So it is enough to consider only the first row of the PSA Mueller
matrix and the Stokes vector of the light leaving the PSG optics [2]. This leads to the

output signal as the sum of each Mueller matrix component multiplied with a

coefficient:
4
Soout = z Hijmy; 3.21
ij=1

Where Syou: 1s the first component of the output Stokes vector, the intensity
information. u;; refers to the coefficient associated with the Mueller matrix

components, m;;, of the sample.
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1
U11 = P1P2 + P19z c0s108 + q,p,c0s20 + > 192 (cos86 + cos120)

1 1 1
Ui = Ec0581p221m12 - 500561;922100549 + q1p,cos26 + §P1P2(1 + cos46)
1 1
+ Zcos&qul(ZcoleQ — cos66 — cos146) + > 042 (cos86 + cos120)

1
+ P14z (cos68 + 2co0s106 + cos146)

1 1
Uiz = q1P2Sin26 + 5Pz (py — cos8,2,)sin46 + quqz(sinlzﬁ — sin86)

1
+ 102 (py — c0s8,z;)(sin146 — sin60H)
. . 1. . .
U1g = Sind,p,z,5in26 + 551n61q221(sm129 — sin86)
1 1
U1 = P1G2 c0s108 + §P1P2(1 + co0s200) + 560561}9122(1 — c0s200)

1 1
+ PReLE (cos80 + cos120) + 7P (2c0s260 + cos1860 + cos226)

1
+ ZCOSSquzz (2c0s26 — cos186 —  c0s220)
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1 1
Haz = 50143 (cos860 + cos120) + 7P (cos60 + 2cos100 + cos148)
1
+ 100581q221(2005109 — c0s66 — cos146)
1
+ qupz(ZCOSZG + c0s186 + cos226)
1
+ gPiP2 (2 4+ 2c0s46 + cos160 + 2c0s206 + cos240)
1
+ 560581}7221(2 — 2c0s46 —  c0s160 + 2co0s200 — cos248)
1
+ —c056,q,2,(2c0s26 — cos186 — cos226)

4

1
+ gCOSSZplzz (2 + 2c0s46 — cos166 — 2c0s206 — cos246)

1
+ 500581c05822122 (2—  2c0s40 + cos160 — 2c0s200 + cos240)
1 ; . 1 )
M2z =501z (sin126 — sin86) + 172 (p1 — c05812;)(sin146 — sin66)

1 . . .

+ 74P (2sin280 —  sinl186 + sin226)
1

+ gP2 (p1 — c0s8,21)(25in40 — sin166 + sin246)

1 1
+ ZCOSSZPlZZ (2sin260 + sin1860 — sin220) + 50058222 (p1

— c0s8,2,)(2sin46 + sin160 — sin240)
1. . . 1. . . .
Upg = Esm81q221(5m129 — sin86) + Zsm61p221(251n29 — sin186 — sin226)

1
+ gsin81c05822122 (2sin26 + sin186 — sin220)

1 1
U3z1 = P1G.Sin106 + 5P1 (p, — c0s56,2,)sin2060 + quqz(sinlze + sin86)

1
+ Z%(pz —  €056,2,)(sin186 + sin226)
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1 1
M3z = =102 (sin126 + sin86) + 7P192 (sin66 + 2sin1060 + sin140)
1
+ Zc0581q221(25in109 — sin66 + sin1486)

1
+ 20 (p, — c0s8,2,)(sin180 + sin220)

1 1
+ gh (p, — c058,2,)(sin160 + 2s5in200 + sin246) + §c058121(p2

—  €0506,2,)(25in200 — sin166 — sin246)
1 1
M3z = 54142 (cos86 — cos120) + 172 (p1 — c05812;)(cos60 — cos146)
1
+ qu(pz —  €056,2,)(cos186 — cos220)

1
+ 3 (py — c0s6,21)(p, — c056,2,)(cos160 — cos240)
1 1
U3g = Esm81qzzl(c0589 — cos1260) + ZsanIZl(pz — €058,2,)(cos180 — cos220)
. . 1. . .
Uaq = — Sind,p;2,5in100 — Esm(qulZz (sin120 + sin80)

1 1
Uany = —EsinGquzz (sin126 + sin80) — Zsinéizplzz(sin69 + 25in106 + sin140)

1
- Zc05815in822122 (2sin106 — sin66 + sin146)
1 1
U4z = —ESlnSquzz (cos86 — cos126) — ZSlTlSZZZ (p1 — c0s8,2,)(cos66 — cos146)

1
Uss = —EsinSISinSZlez (cos86 — cos120) 322

Where for convenience, some constants have been considered which contents the
diattenuation and retardance error:

P1 = Tmax1 + Tmina
3.23

91 = Tmax1 — Tmin1
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Zy = 2y Timax1 Trmina

P2 = Tmax2 + Tminz
42 = Tmax2 — Tminz

Zy = 2y Tiax2Tminz
P1 = p1P2 — P221€058; — P1Z,€058, + c0561c050,21Z;

B2 = p1p2 — P221€0S8; + P12,€088, — c0561C0S0,717;
B3 = p1p, + p22,€0S8; — P12,€088, — c0561C0S0,717;

Bs = 01P2 + P22,€058, + p12,c058, + c056,c056,217,

(1 = P1P2 — P1Z2€0S6,
(y = P2P1 — P221€0S6
a3 = p1P2 + P122€0S6,

Ay = PPy + P22,€0864

ui; depends on the rotational angle 6, retardation and diattenuation of the two
retarders. As the Mueller matrix coefficient and the retardation and diattenuation of the
retarders are constants, the output intensity S;,,¢ Will vary only for the rotational
angle 0.

Therefore, the output signal will be periodic and it can be represented as a

Fourier series:

12
Soout = Qo + Z(an cos2nf + b, sin2n9) 3.24

n=1

Where a, and b, are the real and imaginary Fourier coefficients of the output signal. In
this case, a, and b, are the function of retardance and diattenuation of the retarders and

the Mueller matrix coefficient of the sample:
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Ay, bn - f(mijr 61r 62! Tmaxl: Tminl» TmaxZ' Tminz) 3.25

Where f refers to as function. As a, and b, do not depend on rotational angle € or any
other variable, the Mueller matrix elements of the sample m;jcan be retrieved by the

inverse calculation:
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Myy Sindysind, 2,7, (ae 4) ) 9 2 7 ., (ag 12)
2q1q;
+ [ay1f1 a; — (a1 + 4aya; — azf3)ag — azff agg
a0

+ (4 p1 p2B1 + azB3 — aifz)aqz]

The normalization of the Mueller matrix component can be done by dividing all m;; by
mii.

In order to calculate the Mueller matrix element of an unknown sample by the
proposed equations, it is necessary to retrieve the value of the error constants. The

no-sample calibration method is used to retrieve the error constants of the retarders.
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3.5Error calibration by taking non-sample approach

For calibration of the error due to the imperfect retarder, it is necessary to
know the true value of retardance and diattenuation of the retarders. The calibration
algorithm for the errors as described in this section to implement the approached model

has been described in the last section.
An experiment without any sample has been done in order to retrieve the value

of the error constants (shown in Eq.9). In this case, the Mueller matrix will be
identical:

3.27

S RO O

0
0
0
1

O O O

No sample

Therefore, according to Eq.5, the Stokes vector of the output signal will contain
only four coefficient (y;;) associate with the Mueller matrix components. Here also u;;
depends on the rotational angle 8, retardation and diattenuation of the two retarders. But

unlike the previous case, the output intensity (Sg,y,:) Will not depend on Mueller
matrix element of the sample (m;;), it will depend on the retardance and diattenuation

of the retarders and the rotational angle.

Therefore, the complex Fourier components of the output signal also will not depend on
the Mueller matrix elements (m;;), it will depend on the error constants only, i.e. they

will be a function of retardation and diattenuation of the retarders.
As in this case, the complex Fourier components depend on retardation and

diattenuation only, so the error constants can be retrieved by the inverse calculation of

the complex Fourier coefficients.
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The diattenuation of the retarders will be:

D. = Tmaxt = Tmin1 _ 1P2 a; + ao
L= = =
Tmax1t + Tmin1 P1P2 Qo +az +ag+ay
3.28
D, = Tmax2 = Tmin2 _ P19z az + as
, = = =
Tmaxz + Tminz  P1P2 Qo +az +ag+ay
The retardance of the retarders will be:
,[2(ag—3a,—3ag+ alo)l
01 = cos
V€ — €
) 3.29
|2 (ao + a2—3a8—3a10)l
0, = cos
ﬂ C1 - C3
Where:
¢, = 4ay? + 8aya, + 8agag + 8agag + 4aga, + 4agag + 4a,?
+ 8a,ag + 8aya, + 4a,a, + 4azag + 4 ag? + 8agay,
+ 4aag + dagag + 4 ao? + 4asaq, + 4aga 3.30
c; = 4a,?+8ajaq + 4aa; + 4a,as + 4 ag® + 4azaq + 4asa,
c3 = 4a,a; + 4a,as + 4asaq + 4asag + 4 az? + 8azas + 4 as?
And the error constants will be:
1
PPz =5 (ag + a; + ag + ayp)
1
092 =5 (as + ag)
1 3.31
qip2 = 2 (a; + ao)
1
P92 =5 (az +as)
1 211/
7z =3 [(ap+a,+a,+ag+ag+a) —(a +as+as+ag)’] 7’2
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P2Z1 = —4/C1 — C2

_1
P1Z2 =2 €1 —C3

Where ¢y, c2, c3 are same as Eq.3.30.

Now, this value should be substituted back in Eq.3.26 to calculate the Mueller matrix of any

sample.
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3.6Experimental results

The Mueller matrix polarimeter consists of a tungsten halogen light source, a
narrow band-pass filter of wavelength 632.5+5 nm, Glan-Thompson polarizers and
zero- order quartz quarter waveplate at 632.5 nm. A 14 bit CCD camera
(Thorlab-8050M-GE-TE) was used to capture 36 images over a rotating of 180° (36x5
©) of the first retarder. In each position, 20 images were taken and averaged in order to

reduce noise.

The algorithm is based on the Azzam’s model of dual rotating retarder
polarimeter [1]. The effect of diattenuation and retardation error has implemented in this
model. The calibration of the Goldstein-Chipman algorithm also based on the Azzam’s
model [16]. Hence, the experimental results have compared only with the Azzam’s
algorithm and the Goldstein-Chipman algorithm to show the enhancement of accuracy
by the proposed algorithm. There are also many other algorithms [16-21] to
compensate errors of this polarimeter. But our proposed algorithm is the unique one

which compensates the diattenuation error along with the retardation error.

The experimental results for no-sample and retarders are presented in two

sections.
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3.6.1 No-sample

The experimental results for no-sample are presented in Table 1; and have been

compared with the - without calibration result, the Goldstein-Chipman algorithm results

and theoretical value. In the table, the sum of the square of errors for all Mueller matrix

elements has been shown and compared with an aim to measure the accuracy of each

method. The numerical value is the value of one point of the image.

Table 3.2 Experimental result for no sample

Sum of square  Tpeoretical
Mueller matrix of errors for all
elements value
. 1.000 —0.023 —0.009 0.003
Without 0.046 0937 —0.022 0.006 0.013
calibration —0.019 0.030 0.952 0.003 :
0.004 —0.001 —0.049 0.982
Goldstein-Ch 1.000 0.004 —0.016 0.003 1 0 0 0
. 0.004 0.950 0.033  0.006 01 0 0
pman —0.002 —0.025 0.965 0.003 0.009 0010
algorithm —0.002 0.009 —0.051 0.983 0 00 1
1.000 —0.019 —0.010 —0.001
Proposed —0.018 0994 —0.024 0.013 0.004
algorithm —0.021 0.032 1.010 0.021 :
0.011 -0.014 —0.011 0.984

In the results shown in the Table 3.2, all Mueller matrix elements are

normalized by mi;. For mz2 and m33 where the theoretical value is 1, the error obtained

by the proposed algorithm is 1% whereas by other methods it is about 5%. In the case of

m44, the error is about 2% obtained by all processes. For m43, the error is nearly 1% by

the proposed algorithm whereas by other methods it is about 5%. For mo3 the error is

about 2-3% for every method. For all other elements, 1-2% errors have been obtained.
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In the case of the sum of the square of errors, the error of each element has
been squared and added. It clearly reflects the overall error obtained by each method.
For the other methods, it is nearly or more than 0.01 but for the proposed method it is

0.004.

The image of the Mueller matrix for no sample obtained by the proposed
algorithm has shown in Fig.2 in order to show the variation over space. The line profile
has also been shown in order to show the one-dimensional variation. The line, whose

profile has been drawn, has mentioned in the image of mua4.
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3.6.2 Retarder analysis variation using QWP and Babinet-Soleil
compensator

frimin

& & T

Figure 3.6 (a) 2-dimensional plot of Mueller matrix for no-sample. (b) 1-dimensional line

profile along horizontal axis.

The experiment has been carried out taking a QWP and a variable retarder
(Soleil-Babinet compensator) as a sample. The retardance of the sample can be obtained
after decomposing the Mueller matrix [6,7]. To measure the retardance of the sample is
one of the challenging jobs in polarimetry. High accuracy of the system is needed to
measure the retardance accurately since small errors in the system may change the result

significantly.
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The decomposed image of retardance of the sample (QWP) is presented without
calibration and after calibration of diattenuation and retardation error (Fig.3.7). The
variation of retardance of the QWP is much more in the case of without calibration
results than after calibration results. Although little fluctuations can be observed, yet
stability in the overall nature also can be observed in the case of calibrated results. On
the other hand, in the case of without calibration result, there is a possibility for

occurrence of fluctuation of retardance over space.

‘5.’;; 4

0- ] |

3 4
X (mm)

[V,

Figure 3.7 Fig. The retardance of a QWP obtained by decomposing its Mueller
matrix. (a) is the 2-dimensional plot of retardance of a retarders as a sample obtained
without calibration. (b) is the same obtained after calibration by proposed algorithm.
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Babinet-Soleil Compensator is a variable retarder constructed by 2 wedge quartz
crystals. The retardance of the system changes linearly concerning the movement of one
quartz plate. The experiment results for a Babinet-Soleil Compensatoris shown in
Fig.3.58. The retardance has been calculated by decomposing the Mueller matrix over

displacement.

180

150

120 .,.5"'
90 . P
60

30 6

4 .-
-30 R Displacement (mm)

Retardance (deg)

-60

.‘-"" o Proposed algorithm  R? = 0.9993
120 L x Without calibration R2 = 0.9980

-150

-180

Figure 3.8 The variation of retardance of a Babinet-Soleil Compensator over

displacement.

Fig.3.5 shows variation of retardance over displacement which is obtained at a
point of the CCD camera. An arccos function has been used to determine the value of
retardance as per the Lu-Chipman Mueller matrix decomposition method [6]. The
results are limited between 0° to 180° so it has been unwrapped intend to get the
variation from -180 ° to 180°. Both results obtained by the proposed algorithm and

without calibration method have been shown. The dotted line indicates the linear
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trendline. The trendline for both results became the same. As expected, the obtained
values are linear, which supports the theoretical phenomena of Babinet-Soleil
Compensator. The coefficient of determination (R?) values has also been shown to
measure the linearity of the obtained data. Here also the data obtained by the proposed

method is more linear than without the calibration method.
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4 Enhancement in time of Mueller matrix polarimeter

To do enhancement in time of Mueller matrix polarimeter, our proposal is to
construct a single shot Mueller matrix polarimeter using the property of channelled
spectrum and axially symmetric quarter waveplate [23][24]. A circular grating has used
here instead of conventional grating. The proposed set up has described with a

supporting algorithm.

Mueller matrix polarimeter is constructed by modulating the polarizing state of the
input beam in polarizing state generator and also analysing the polarizing state of the
output beam in polarizing state analyser. This modulation is generally done by
modulation in the time domain [1], modulation in the spatial domain [24], modulation
in spectral domain [23]. But to construct a single shot Mueller matrix polarimeter using

this kind of modulation is a little difficult.

Here we have proposed to construct a single shot Mueller matrix polarimeter
using the combination of spatial domain modulation and spectral domain modulation

of polarization.

For spatial domain modulation of polarization, an achromatic axially
symmetric wave plate (AASWP) has been used [24]. Achromatic axially symmetric
wave plate (AASWP) acts like a Fresnel rhomb and introduce phase difference
between the two axes of the beam. So that it behaves like a retarder where retardance

remains constant but the fast axis orientation varies over the space.

For spectral domain modulation, the theory of channelled spectrum has been
adopted [23] and thus two high order retarders and a polarizer have been used.
When broadband wavelength light passes through high order retarders, the retarders
introduce different phase for each wavelength. By using a grating, these wavelengths

can be separated and modulation over the space can be measured.
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For the grating, a circular or radial grating has been used. This is a tricky thing for this
proposal. Generally, gratings are linear or crossed, but here circular grating is used to

separate the wavelengths radially.
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4.1 Proposed setup

In the proposed arrangement as shown in Fig.4.1, the PSG consists of a
broadband light source followed by a polarizer with its transmission axis at 0° and two
thick retarders with directions and magnitudes of retardance 45°, 61 and 0°, o2
respectively. Where 81 and 62 are functions of wavenumber k. The PSA consists of and
an achromatic axially symmetric quarter waveplate (AASQWP) and an analyser
oriented at 0°. The channelled spectra are generated by diffraction from a circular
grating and the spatio-spectrally signal is collected through a lens and recorded on the
CCD.

Achromatic axially symmetric quarter waveplate (AASQWP) and an analyser
oriented at 0° has been used as polarizing state analyser (PSA); and a polarizer and two
high order retarder oriented at 0°,45° and 0° has been used as polarizing state generator

(PSG) [Fig:4.1].

PSG PSA

Broadband Polarizer Retarder  Retarder  Sample ASQWP Analyzer Circular Imaging CCD
Light source 0° 45°, 8,°(k) 0°, 8,°(k) 6°, 90° 0° grating lens
Fig. 4.1 Experimental setup for single shot Mueller matrix polarimeter

A white light source has been used followed by a collimating lens. A circular
grating has been used to separate the wavelengths radially. A lens system and CCD

has been used to capture the image.
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4.2 Theory

According to the theory of Mueller matrix, the output Stokes vector can be written as
Sout (k) = My MASQWP M MRZ(k) MRl(k) Sin 4.1

Where ‘k’ denotes the wave number which is the reciprocal of the wavelength. ‘M’

denotes the Mueller matrix of each component.

The output intensity will be

1 1 0 0 1 0 0 0 Mmy1 Mz Mz Myy
5|l 100 [ 0 | cos? 20 sin.29c0526 —sin26 ] My, Myy Mz Moy
0 0 0 Of(0 sin26cos26  sin?20 c0s20 ||Ms1 M3z M3z Mgy
0000 L) sin20 —cos20 0 M4 Mz Maz Mg
1 0 0 0 1 0 0 0 1 4.2

9 0 1 0 0 0 cosdi(k) 0 —sindi(k)||1

0 0 cosd(k) sind,(k)|]o 0 1 0 0

0 0 —sind(k) cosé,(k)]10 sind, (k) 0 cosd; (k) |LO

From this equation, the output intensityor the 1% component of the output Stokes vector

can be calculated by matrix multiplication method.

1
S0t (k) = <m11 + cos?20my; + ESin46m31 - Sin26m41)

1
+ (m12 + cos? 20 m,, + Esin49m32 - sin29m42> cosd, (k)
4.3
1
+ (m13 + cos?20my3 + Esin49 m33 — Sin20 m43) sind; (k)sind, (k)

1
+ (m14 + cos? 20 my, + Esin49m34 - sin29m44> sinéd; (k)cosd, (k)

Where §;(k) and &,(k) are the retardance of two retarders, k is wave number and 6

is the orientation of azimuthal angle of the AASQWP.
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In the image, there will be spatial variation both for channeled spectrum and ASQWP. If
we take a circular line, there will be variation for azimuthal angle (6) of the ASQWP but

there will be no variation for wavenumber (k) (as circular grating has used). Similarly, if
we take a straight line through the center, there will be spatial variation for wavenumber

(k) but there will be no variation for azimuthal angle (¢) of the ASQWP.

2950 O

450

67.5°

1359

Fig. 4.2 Output image

So here we take some line at 8=0°, 22.5° 45° 67.5°, 135°% the intensity distribution
along these lines will be different due to the modulation of AASQWP and we will get

different intensity distribution. The intensity distribution of each line can be denoted

as Iy(k).
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At 0=0°,

1
Ii(k) = (m11 +1my; + 5 0ms; — Om41)

1
+ (m12 + 1m22 + E Om32 - Om42) COS(Sl(k)

1
+ (m13 + 1m23 + 50m33 - Om43) Sin61(k)sin62 (k)

1
+ <m14 + 1m24 + 50m34 - Om44> Sin61 (k)COS52 (k)

At 0=22.5°,
1 1 1
L (k) = <m11 + 5 Ma1 + 5 M3t~ ﬁmu)
1 1 1
+ <m12 + Emzz + §m32 - ﬁm“) c0s64 (k)
1 1 1 ] )
+ <m13 + 5 Ma3 + 5 M3z~ ﬁm%) sindy (k)sinéd, (k)
1 1 1 )
+ <m14 + 5 Ma24 + 5 Mg~ ﬁmM) sind; (k)cosé, (k)
At 0=45°,

1
I3 (k) = <m11 + 0my; + > 0ms; — 1m41)

1
+ <m12 +0my, + > 0ms, — 1m42) cosé, (k)
1
+ <m13 + 0my3 + 50m33 - 1m43) sindy (k)siné, (k)

1
+ <m14 + Oy + 5 0my, - 1m44) sind, (k)coss, (k)
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At 0=67.5°,

1 1 1
Iy(k) = (m11 + §m21 - Em31 \/im41>

1 1 1
+ (m12 + 2m22 2 37 — 2m42> cosd (k)

\/_
1 1 1

+ (m13 + §m23 - §m33 ﬁm43> Sln51 (k)Sln52 (k)

V2

1 1 1
+ <m14 + _m24_ - _m34_ 2 m4_4_> Sln61 (k) C0552 (k)

2 2
At 0=135°,
1
Is(k) = <m11 + 0m21 + E 0 m31 + 1m41)
1
+ <m12 +0my, + > 0ms;, + 1m42> cosé, (k)
1 . .
+ <m13 + 0my3 + 50m33 + 1m43) sindy (k)siné, (k)
1 .
+ <m14 + 0mgy, + §0m34 + 1m44) sinéd; (k)cosd, (k)

By some algebraic calculation we can get:

1
5(13 (k) + Is(k)) = myy + my, cosdy (k) + my3 sind; (k)sind, (k)

+ mq,siné; (k)cosd, (k)

1
11 - E (13(k) + Is(k)) = m21 + mzz COS51(k) + m23 Slnal(k)sindz(k)
+my,sind; (k)cosd, (k)
(I, (k) — 1,(k)) = m3q + m3, cosé, (k) + ms3 sind; (k)sind, (k)
+ mzysind; (k)cosé, (k)
1
E(IS (k) = I3(k)) = myy + my, cosé; (k) + my; sind, (k)sind, (k)

+ myysind; (k)cosé, (k)
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Now, by FFT we can get all Mueller matrixes.

From - (I3(k) + I5(k)) :
%(13 (k) + I5(k)) = my; + my, cosdy (k) + my5 sind, (k)sind, (k)
+my,sind, (k)cosd, (k)

1
= = (k) + 15()

4.10
=my; + my, cosd, (k)

+my; %{cos(&l (k) — 8,(k)) — cos(8, (k) + 6,(k))}
+ mM%{sin(&l (k) = 85(k)) + sin(8; (k) + 82 (k))}

The simulation of output Intensity Distribution is shown in Fig 4.3:

3.5 H e

2.5

1.5

0.5 H

15  Wavenumber (x10%cm?) 2.2

Figure 4.3 Output Intensity Distribution
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By Fast Fourier transform we can obtain the Fourier coefficient.

Q10 = My
a1 = My
B 1
a;- = 2m13
- —lm 4.11
1+ o M3
b = 1
1- = 2m14
by, ==
1+ 2m14

Therefore, the 4 Mueller matrix component of the sample can be obtained in terms of

the Fourier coefficient.

my1 = Gy
my; = agq

4.12
myz = 201 = =204

My = 2by_ = 2by,

As these are obtained from the 1% set of the equation, suffix 1 is added with all Fourier

coefficients.

1.6 B

141 .

127 B

0.8 B

06 B

0.4 .

02 B

OPD

Figure 4.4 FFT plot of channeled spectrum
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Similarly, from  I1(k) — 3 (I (k) + Is(k))

I (k) — % (I, (k) + I5(k)) = myq + myy c0s6; (k) + my3sind; (k)sind, (k)

+m,45in6; (k)cosd, (k)

1
= L(k) =5 (L (k) + 15 (k)

4.13
=myq + my, COS(Sl(k)
1
+mys E{cos(cs1 (k) — 8,(k)) — cos(8, (k) + 6,(k))}
1 . .
+ Mgy 5 {sin(81(k) — 8, (k) + sin(81 (k) + 8, (k)3
By Fast Fourier transform, we can obtain the Fourier coefficient.
Q20 = M2y
az1 = My
1
ar- = §m23
g =L 4.14
2+ 2 23
1
b, = §m24
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Therefore, the 4 Mueller matrix component of the sample can be obtained in terms of
Fourier coefficient.
ma1 = Qzo
Mpz = Az1
4.15

M3 = 205 = 2054

Myy = 2by_ = 2by,

As these are obtained from 2" set of equation, so suffix 1 is added with all Fourier

coefficients.

Similarly, from (Ip(k) — 14(k)) :

1
> (I, (k) + I5(k)) = m3; + m3, cosd; (k) + mg3sind; (k)sind, (k)

+m3,5ind, (k)cosd, (k)

1
=5 (I(k) + Is(k)
4.16
= mgzq + M3, cosd (k)

+mag 3 feos(8: ) — 5,(k)) — cos(,(k) + 8,(k))

1
+may o {sin(6y (k) — 8, (k) + sin(8, (k) + 8, (k))}

By Fast Fourier transform, we can obtain the Fourier coefficient.
A3zp = M3y

az; = Mms;

1 4.17
az- = 5Mgz3

az4 = —5M33
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Therefore, the 4 Mueller matrix component of the sample can be obtained
in terms of the Fourier coefficient.

mzq = Az
msz; = adszq
4.18
Mgz = 203 = —2az;

M3y = 2b3_ = 2b34

As these are obtained from the 3™ set of the equation, suffix 1 is added with all Fourier

coefficients.

Similarly, from > (Is(k) — I3(K)):

1
5 Us(k) = I3(K))

= My, + My, 056, (k) + myzsind; (k)sind, (k)
+ My, Sind; (k)cosd, (k)

1
=5 Us(k) = (k) 4.19

= My, + My, COS51(k)

1
+myz 5 {cos(8y (k) — 8, (k) — cos(8y (k) + 8, (k))}

+ m44%{sin(51(k) = 8, (k) + sin(8; (k) + 6, (k))}

By Fast Fourier transform, we can obtain the Fourier coefficient.

Qg = My 4.20
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1
Ay = 2m43
1
Ay = 2m43
b 1
- = 2m44
b 1
4+ 2m44

Therefore, the 4 Mueller matrix component of the sample can be obtained in terms of

Fourier coefficient.

Myq = Ay
My = Ayq

4.21
My3 = 204 = —2044

Myy = 2by_ = 2by,

As these are obtained from the 4™ set of the equation, suffix 1 is added with all Fourier

coefficients.
So finally we can write the equation of all Muller matrix coefficients together as:

Table 4.1. Equation of Mueller matrix elements of the sample

mqq = Ay mq; = an my3 = 2a;_ = —2ay, mqy = 2by_ =2bq,
mzq1 = Az my; = az; Mmy3 = 2a;_ = =20y, Mmyq = 2by_ = 2by,
mzq = QAzg msz; = asz, mg3 = 2a3_ = —2az, mgy = 2b3_ = 2b3,
myq = Ay My = Ay my3 = 2a, = —2a,, Myy = 2by = 2by,
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Where ‘N’ is the number of the line taken from the image; ayo, ani, ans, An_ are
the real Fourier coefficient and by_ and by, are the imaginary Fourier coefficient;
my; are the 16 Mueller matrix component of the sample.

Here we have succeeded to determine all 16 elements of the Mueller matrix of the
sample in a single shot. Channeled spectrum polarimetry using two high order retarders
has been used with a circular grating. Circular grating divides the beam according to
wavelength in a radial manner. Achromatic axially symmetric waveplate has a variation
of azimuthal angle over space but retardance is constant. And as it is achromatic, it does

not depend on the wavelength.

As this method is a single shot, using a high-speed camera it can be used as real-time

measurement.
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4.3 Experimental setup approach

To build up the system we needed a circular grating. It is not possible to work
with conventional linear grating for this algorithm. Because here we have to take five

spectra instead of one. The required grating type has been shown in Figure 4.2 below:

Fig 4.5 Circular grating diagram

Here is the diagram of a circular grating.
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But we need only 5 directions of the circular grating. Therefore, instead of circular
grating, we made a compound grating that has a linear grating in 5 directions. The

diagram is shown in Figure 4.6
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Fig 4.6Compound grating diagram
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500 lines per mm sheet grating have been used to make this grating and it has

catted and pasted in the proper direction. The picture of the grating is shown in figure 4.7.

Fig 4.7Compound grating picture

The spectrum obtained by this grating is taken on a white screen. The spectrum we

obtained on the screen is shown in Figure 4.8.

Fig 4.8spectrum obtained in the screen without focusing lens.
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In our proposed technique, we are taking the upper half of the image, as the
lower half is the reciprocal of the upper half. After focusing on a 40mm aromatic lens,

the image has been obtained in the CCD camera as shown in Figure 4.9.

Fig 4.9 spectrum obtained in CCD after focusing on a 40mm achromatic lens.
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Conclusions

The enhancement of the Mueller matrix polarimeter is presented. Enhancement
of accuracy is presented by the algorithm along with the supportive experimental results.

Enhancement in time is described by the algorithm as it is a new theoretical approach.

In enhancement of accuracy, a calibration method for diattenuation and
retardance errors for dual rotating retarder polarimeter is presented. The main objective
to compensate the errors due to imperfect retarders to enhance the increment of
accuracy. As any azimuthal errors have not considered, so to apply this algorithm it is
necessary to align the retarders and analyzer properly. Based on the experimental results

we can conclude that by the proposed method an increment of accuracy is obtained.

In the enhancement of time, we have succeeded to determine all 16 elements of
the Mueller matrix of the sample in a single shot. Channeled spectrum polarimetry
using two high order retarders has been used with a circular grating. Circular grating
divides the beam according to wavelength in a radial manner. Achromatic axially
symmetric wave plate has a variation of azimuthal angle over space but retardance is

constant. And as it is achromatic, it does not depend on the wavelength.

As this method is a single shot, using a high-speed camera it can be used as real-time

measurement.
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