シングルミクロン粒径を有する無機混和材料を 用いたモルタル・コンクリートの諸特性に関する研究

藤原 了

目次

第	1	章	序論																														
1		1	研究の)背景	• •	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1		2	研究の)目的	• •	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
1		3	論文の)構成	• •	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
第	2	章	既往の)研究																													
2		1	概論·	•••	• •	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
2		2	ダイラ	ラタン	シー	-性	状	に	関	す	3.	既	住の	のł	研究	龙九	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	2.	. 2	2. 1	レオ	ロシ	ブー	\mathcal{O}_{i}^{i}	定	義	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	2.	. 2	2. 2	ダイ	ラら	マン	シ		性	状	に	関	す	3ł	研究	危九	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	2.	. 2	2. 3	材料	分野	予に	お	け	る	ダ	イ	ラ	タ	$\boldsymbol{\nu}$	シー	-1	生状	に	関	す	3	研究	危九	•	•	•	•	•	•	•	•	•	13
2		3	本研究	宅に関	わる	ら無	機	系	混	和	材	料	に	푖`	する	3 B	无往	の	研	究	•	•	•	•	•	•	•	•	•	•	•	•	14
	2.	. 3	8. 1	高炉	スラ	ラク	"微	粉	末	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	2.	. 3	8. 2	フラ	イフ	マツ	シ	ユ	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
	2.	. 3	3. 3	シリ	カフ	7ユ	. —	ム	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
		ज्येदः	21212				میں ا	I		_		Ant.	ъл _	t .		•		_	,	-					и .	1		1.1					
第	3:	早	229	アルミ	クロ	コン	一局	炉	ス	フ	77	成	衍;	末に	<i>а</i> ,	よび	ドフ	フ	1	J	ツ	シュ	1($\mathcal{D}_{\overline{z}}$	垦	本	特	性					
第 3	3:	早 1	ガング	· · ·	クロ ・・	- ·	′局; ・	炉・	ス ・	フ ・	ク? ・	成) ・	か ・	末 ・	ដ. •	גז י	メフ ・・	フ ・	1 •	, ,	ツ ・	ジ: ・	ı.	り រ ・	・	本 [;] •	特 ・	性・	•	•	•	•	20
第 3 3	3:	早 1 2	シンク概論・使用を	アルミ ・・・ 材料・	クロ ・・ ・・	· ·	、 し、 い い	炉 • •	ス ・ ・	フ ・ ・	ク ・ ・	成	粉 ・ ・	末 ² ・ ・	, ג י י	גז • •	アフ ・・ ・・	フ ・ ・	1 •	,	ツ ・ ・	ジュ ・ ・	- C - -	り ₂ ・ ・	堡 ・ ・	本 ・ ・	特 [·] ·	性 ·	•	•	•	•	20 21
第 3 3 3	3:	早 1 2 3	シンシ概論・使用実験	ル、 ・・ す料・ ×準・	クロ ・・ ・・ ・・	· ·	、 してい (局) (一) (一) (一) (一) (一) (一) (一) (一) (一) (一	炉 • •	ス ・ ・	フ ・ ・	クマ ・ ・	成) ・ ・	的: · ·	末: ・ ・	ដ	£7 • •	ドフ ・・ ・・	フ ・ ・	1 • •	,	ツ ・ ・	ショ ・ ・	- (- -	ン <u>-</u> ・ ・	垦 · ·	本 · ·	特 [·] ·	性 ・ ・	•	•	•	•	20 21 23
第 3 3 3 3	3:	早 1 2 3 4	シンジャー 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	ル 、 ・ ・ 村料・ 大準・ 見ぜ方	クロ ・・・ 法・		、 し、 ・ ・ ・	炉 • •	ス ・ ・ ・	フ・・・・・	クマ ・ ・ ・	成) · ·	的: · ·	末 ³ ・ ・ ・	ָּ גַּ י י	£ 7 • •	ドフ · · · ·	フ ・ ・ ・	1 • •	,	ツ ・ ・ ・	ショ ・ ・ ・	- C - -	ン ₂ ・ ・ ・	生 ・ ・ ・	本 · ·	特· · ·	性 · · ·	• • •	• • •	• • •	•	20 21 23 23
第 3 3 3 3	3:	早 1 2 3 4 5	ン概使実練実り	ル 、 、 、 、 、 、 、 、 、 、 、 、 、	ク ・・・ 法 評	ロン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	高 ・・・・ 法	炉 • • •	ス ・ ・ ・	フ・・・・・	クイ ・ ・ ・	成) · · ·	防 ・ ・ ・	末: ・ ・ ・	ະ	£ (• •	ドフ - ・ - ・ - ・	フ ・ ・ ・ ・	1 • • •	,	ツ ・ ・ ・	ジェ ・ ・ ・	- (ル ₂ ・ ・ ・		本 ・ ・ ・	符 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	性・・・・・	• • •	• • •	• • •	•	20 21 23 23 24
第 333333	3: 3.	早 1 2 3 4 5 . 5	ン概使実練実い。 和用験り験り、 1	・	ク・・・ 法 評 ッロー	ロ ・・・ 「	高 ・・・・法性	炉・・・・ 状	ス ・ ・ ・ ・	フ・・・・・・	クイ ・ ・ ・	成) · · ·	防 ジ・ ・ ・ ・	末 ^に ・ ・ ・	ָּ מָ	£ (• • •	ドフ · · · · · ·	フ ・ ・ ・ ・	1 • • •	<i>y</i>	ッ ・ ・ ・	نېن	- (の ₂ ・ ・ ・		本 ・ ・ ・ ・	符・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	性・・・・・・				•	20 21 23 23 24 24
第33333	3: • • • 3:	早 1 2 3 4 5 . 5 . 5	ン概使実練実	オス混真フ粘、シャシン	ク・・・ 法 評 ッ (ダ	2、・・・ 方 ユ イン	高・・・・ 法性 タ	炉・・・・・ 状 ~	ス・・・・・・・・シ	フ・・・・・・・	ク ・ ・ ・ ・		防 ジ ・ ・ ・ ・	末 [:] ・ ・ ・ ・	お。 ・ ・ ・ ・		トフ 	フ ・ ・ ・ ・ ・	1 • • • •	<i>y</i>	ツ ・ ・ ・ ・	· · · · ·	- (り ₂ ・ ・ ・ ・	坠 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	本 ・ ・ ・ ・	特・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	性・・・・・・・・	• • •	• • • •	• • • •	•	20 21 23 23 24 24 25
第 3 3 3 3 3	3: 3. 3.	早 1 2 3 4 5 5 . 5 . 5 . 5	ン概使実練実ン論 相験り験123	オベ発貢 おべてい おくろう おくろう おくろう おくろう お 圧え・・・・ 方 と レ 性 縮	ク・・・ 法 評 ッ(強度	1	高・・・・法 性 彡・	炉・・・・・ 状 ~ ・	ス・・・・・・・シ・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	成び ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	防 ジ ・ ・ ・ ・	末 : ・ ・ ・ ・ ・ ・	な。 ・ ・ ・ ・ ・			フ ・ ・ ・ ・ ・ ・	1 • • • • •	<i>y</i>	ツ ・ ・ ・ ・	ジン: ・ ・ ・	- (り ² ・ ・ ・ ・	坐・・・・・・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・	本 ・ ・ ・ ・ ・	符・・・・・・・・・	性・・・・・・・・・				•	20 21 23 23 24 24 25 26
第33333	3: 3. 3. 3.	₽ 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ン概使実練実	イオス発貢(村大発貢)が大学である。	ク・・・法 評 ッ(強 収1に、・・・ 社 評 ッ(強 収	1	高・・・・ 法性 タ・・	炉・・・・・ 状、・・	ス・・・・・・シ・・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	成が ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	防 ジ ・ ・ ・ ・ ・	末 : ・ ・ ・ ・ ・ ・ ・	お。 ・ ・ ・ ・ ・ ・ ・			フ ・ ・ ・ ・ ・ ・ ・	1 · · · · · · · · · ·	<i>y</i>	ツ ・ ・ ・ ・ ・	· · · · · · · · · · · · · · · · · · ·	- (- - - - - - - - - -	り ² ・ ・ ・ ・	坐 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	本 ・ ・ ・ ・ ・ ・	符・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	性・・・・・・・・・・		· · · ·	· · · ·	•	20 21 23 23 24 24 25 26 27
第 3 3 3 3 3	3: 3. 3. 3.	₽ 1 2 3 4 5	ン概使実練実	・ 村々毘頁	ク・・・法 評ッ(強収収下・・・・ 伯 シダ 度解解	1、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	高・・・・法 性 ラ・・・	炉・・・・・ 状、・・・	ス・・・・・・・シ・・・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク・・・・・・ ピー・		防 ・ ・ ・ ・ ・ ・	不・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ָרָאָ 			フ ・ ・ ・ ・ ・ ・ ・	1 • • • • • • • • •	· · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			<i>D</i> ² ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	生・・・・・・・・・・	本 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	符・・・・・・・・・・	性・・・・・・・・・・・	· · · ·	· · · ·	· · · ·	•	20 21 23 23 24 24 25 26 27 28
第 3 3 3 3 3	3: 3. 3. 3. 3.	早 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ン概使実練実	・ 村々混頁	ク・・・法評ッ(強収収中に・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1、 ・・・ 「 」 「 」 「 」 「 」 「 」 「 」 「 」 」 「 」 」 」 ご ・ ・ ・ 化	高・・・・法性 ラ・・・・	炉・・・・・ 状 ~ ・・・	ス・・・・・・シ・・・・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	成 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	防・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	不、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12 • • • • •			· · · · · · · · · · · · · · · · · · ·	1 • • • • • • • • • •	· · · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			<i>D</i> ² ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	生・・・・・・・・・・・	本 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	符・・・・・・・・・・・	性・・・・・・・・・・・・	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	•	 20 21 23 23 24 24 25 26 27 28 29
第333333	3:	早 12345.555.555.555.555.555.555.5555.5555.5	ン概使実練実	・ 村々混頁 ・ 村々混頁 と 本 単 準 ぜ 目 フ 粘 圧 乾 自 促 遮シ・・・ 方 と レ 性 縮 燥 己 進 塩	ク・・・法評ッ(強収収中性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	高・・・・法 性 ラ・・・・・	炉・・・・・ 状 ~ ・・・・・	ス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	フ・・・・・・・・・・・・・・・・・	ク・・・・・・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		防・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	不 、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				· · · · · · · · · · · · · · · · · · ·	1 • • • • • • • • • • •	· · · · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				生・・・・・・・・・・・	本 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	符・・・・・・・・・・・	性・・・・・・・・・・・	· · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	•	20 21 23 23 24 24 25 26 27 28 29 30
第3333333333	3: • • • 3. 3. 3. 3. 3. 3. 3.	早 12345.55.55.55.55.55.55.55.55.55.55.55.55.5	ン概使実練実実施用験り験1234567験~4000000000000000000000000000000000000	・ 村々晁頁	ク・・・法評ッ(強収収中性よて・・・・・何シ゛ 馬納納性・ ひ	1	高・・・・法 性 彡・・・・・ 察	炉・・・・・ 状、・・・・・・	ス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク ・・・・・ ・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・		防・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	末・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				· · · · · · · · · · · · · · · · · · ·	1 • • • • • • • • • • • •	· · · · · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				生 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	本 ・・・・・・・・・・・・・	符・・・・・・・・・・・・	性・・・・・・・・・・・・	· · · · · · · · · · ·	· · · · · · · · · · ·	• • • • • • • • •	•	20 21 23 23 24 24 25 26 27 28 29 30 31
第3333333333333333333333333333333333333	3:	早 1 2 3 4 5 5 5 5 5 5 5 5 6 6 6	ン概使実練実実	・ 村々混頁 お 圧乾自促遮果フン・料準ぜ目フ粘圧乾自促遮果フミ・・・方とレ性縮燥己進塩おレ	ク・・・法評ッ(強収収中性よッロ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	高・・・・法 性 ラ・・・・・ 察 性	炉・・・・・ 状、・・・・・ 状	ス・・・・・・シ・・・・・・・	フ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ク ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		防・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	末 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				· · · · · · · · · · · · · · · · · · ·	1 • • • • • • • • • • • • •	· · · · · · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				生・・・・・・・・・・・・・・・	本 ・・・・・・・・・・・・・・	符・・・・・・・・・・・・	性・・・・・・・・・・・・・		• • • • • • • • • •	• • • • • • • • • •	•	20 21 23 24 24 25 26 27 28 29 30 31 31
第3333333333333333333333333333333333333	3:	早 1234555555555555555555555555555555555555	ン概使実練実	、 村々混頁 お 上乾自促遮果フ粘ル・料準ぜ目フ粘圧乾自促遮果フ粘ミ・・・ 方とレ性縮燥己進塩おレ性	ク・・・法 評ッ(強収収 中性よッ(ダ・・・・・ 伯 シダ 唐 縦 縦 性・こ シダ	1、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	高・・・・法性 ラ・・・・・ 察性 ラ	炉・・・・・ 状 ご・・・・・・ 状 ご	ス・・・・・・シ・・・・・・・シ	フ ····	ク・・・・・・・・・・・・・・・・・		防・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	末・・・・・・・・・・・・・・					1 • • • • • • • • • • • • •	· · · · · · · · · · · · · ·	ツ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				生 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	本 ・・・・・・・・・・・・・・	符・・・・・・・・・・・・・	性・・・・・・・・・・・・・・		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••	20 21 23 24 24 25 26 27 28 29 30 31 31 32

	3.		6.	4	乾燥収縮·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 36
	3.		6.	5	自己収縮·	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 38
	3.		6.	6	促進中性化	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 40
	3.		6.	7	遮塩性・・	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 41
3		7	ま	とめ	····	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 42

第4章 低水結合材比におけるダイラタンシー特性

4	•	1		概	論・	•	, ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
4	•	2		低	水紀		合柞	オ	Ł١	С.	お	け	る	ダ	イ	ラ	タ	ン	シ	-	性	状	の	発:	生	大	子·	の)	解	抈	•	•	•	•	•	•	•	•	47
	4	•	2	•	1	侅	吏 戸	目材	才	钭	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	47
	4	•	2		2	Į	巨馬	倹 フ	k≚	隹	と	練	ŋ	混	ぜ	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
	4	•	2		3	Į	匡馬) 東	頁		と	評	価	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	50
	4	•	2		4	Į	匡馬	倹約	古	₹	お	よ	び	考	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
4	•	3		ダ	イラ	うろ	2)	1	- ~	_,	生	状	の	簡	易	的	評	価	手	法	の	妥	当	性	の	検	証	•	•	•	•	•	•	•	•	•	•	•	74
4		4		ま	とめ			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81

第5章 シングルミクロン高炉スラグ微粉末の乾燥収縮

5	•	1		概	論・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
5		2		高	炉ス	ラ	グ	"微	(粉	末	の	細	孔	構	造	が	硬	化	体	の	収	縮	に	及	ぼ	す	影	響	の	メ	力	Ξ.	ズ	ム				
				の	解明	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	84
	5.		2	•	1	使	用	材	料	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	84
	5.		2	•	2	実	験	冰	準	と	練	Ŋ	混	ぜ	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	86
	5.		2	•	3	実	験	頃	目	と	評	価	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	87
	5.		2	•	4	実	験	結	ī果	お	よ	び	考	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	90
5		3		高州	炉ス	ラ	グ	微	粉	末	の	細	孔	構	造	が	硬	化	体	の	収	縮	に	及	ぼ	す	影	響	の	検	証	•	•	•	•	•	•	98
	5.		3	•	1	使	用	材	料	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	98
	5.		3	•	2	実	験	冰	準	と	練	Ŋ	混	ぜ	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	98
	5.		3	•	3	実	験	頃	目	と	評	価	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	99
	5.		2	•	4	実	験	純	ī果	お	よ	び	考	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	00
5		4		ŧ	とめ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	04

第6章 シングルミクロン高炉スラグ微粉末の実モルタル製品への適用

6.	1	;	概論	ì•	•	•	• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	107
6.	2		シン	グ	ル	ミ /	לכ	1)	/高	炉	ス	ラ	グ	微	粉	末の	のヨ	ЭЛ	ノタ	ル	注	入	材	料・	\sim	D }	啬F	Ħ	•	•	•	•	•	108
(5.	2	. 1		は	じょ	ろん	ς.	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	108

注入材料
•••••109
•••••109
•••••110
•••••111
•••••116
温度ひび
· · · · · · · · 122
· · · · · · · · 122
· · · · · · · · 124
· · · · · · · · 126
· · · · · · · · 129
•••••130
· · · · · · · · 130
· · · · · · · · 131
材への適用・・・133
••••••133
補修材料の
•••••134
•••••134
•••••135
•••••136
•••••137
補修材料の
••••••147
•••••••147
••••••148
•••••150
証

7	. 1	L	概論・	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	152
7	. 2	2	高強度	モコ	ング	ァリ	-	\mathbb{P}	ĸ	お	け	る	ダ	イ	ラ	タ	ン	シ	-	性	状	緩	和	の	検	証	•	•	•	•	•	•	•	•	154
	7.	2	. 1	概	要お	さよ	び	使	用	材	料	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	154
	7.	2	. 2	実	験フ	と 準	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	155
	7.	2	. 3	練	り注	昆ぜ	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	156
	7.	2	. 4	実	験項	頁目	と	評	価	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	156

7.2.5 実験結果および考察・・・・・・・・・	· · · · · · · · · · · · · · 159
7.3 シングルミクロン混和材料の最適置換率の検証・・	•••••165
7.3.1 概要および使用材料・・・・・・・・・	••••••165
7.3.2 実験水準・・・・・・・・・・・・・・・	•••••167
7. 3. 3 練り混ぜ方法・・・・・・・・・・・・	••••••168
7.3.4 実験項目と評価方法・・・・・・・・・	••••••168
7. 3. 5 実験結果および考察・・・・・・・・・	••••••169
7. 4 高強度コンクリートにおけるシングルミクロン混和	和材料の各種性状・・・・172
7.4.1 概要および使用材料・・・・・・・・・	••••••172
7.4.2 実験水準・・・・・・・・・・・・・・	••••••173
7.4.3 練り混ぜ方法・・・・・・・・・・・	••••••173
7.4.4 実験項目と評価方法・・・・・・・・・	•••••••
7. 4. 5 実験結果および考察・・・・・・・・・	••••••175
7. 5 高強度コンクリートにおけるシングルミクロン混和	和材料の耐火性能・・・・177
7.5.1 概要および使用材料・・・・・・・・・	••••••177
7. 5. 2 実験水準・・・・・・・・・・・・・・	••••••178
7.5.3 練り混ぜ方法・・・・・・・・・・・	••••••179
7.5.4 ステップ1(モルタル)の実験項目と評価方	方法・・・・・・・・・・180
7.5.5 ステップ2(コンクリート)の実験項目と評	平価方法・・・・・・・・183
7.5.6 ステップ1(モルタル)の実験結果および考	考察・・・・・・・・・・187
7.5.7 ステップ2(コンクリート)の実験結果およ	よび考察・・・・・・・・189
7. 6 シングルミクロン混和材料の耐火時の通気率・・・	••••••194
7.6.1 概要および使用材料・・・・・・・・・	••••••
7. 6. 2 実験水準・・・・・・・・・・・・・	••••••
7. 6. 3 練り混ぜ方法・・・・・・・・・・・	••••••
7.6.4 実験項目と評価方法・・・・・・・・・	•••••••
7.6.5 実験結果および考察・・・・・・・・・	••••••
7. 7 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••••203

第8章 結論

8.	1	はじめに・・・・・・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 206
8.	2	第1章および第2章の概要	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 207
8.	3	第3章で得られた知見・・	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	• 207
8.	4	第4章で得られた知見・・	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	• 209
8.	5	第5章で得られた知見・・	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	• 209
8.	6	第6章で得られた知見・・	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• 210

8.	7	笌	第7	章	で	得	ら;	h;	た)	知	見	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 2	210
本論)文り	こ関	目す	-3	研	究	報	告	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 2	213
謝辞	£.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 2	215

第1章 序論

1.	1	研究の背景・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1.	2	研究の目的・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
1.	3	論文の構成・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5

1.1 研究の背景

近年における日本の社会資本ストックは、1980年代の高度経済成長期などに集中的に整備され、今後急速に老朽化することが見込まれていることから、必要な社会資本整備との バランスを取りながら、戦略的な維持管理・更新を行うことが課題となっている。例えば、 道路橋においては、建設後 50年以上経過する社会資本の割合が、2018年3月で約25%で あるが、2023年3月では約39%、2033年3月では約63%と増加する見込み¹⁾である。

このような時代背景から、国土交通省²⁾では、「建設生産システムの省力化・効率化・高 度化による生産性向上への取組みを強化する方針」を示しており、生コンクリートなどの 現場施工からプレキャスト製品化を推奨している。よって、プレキャスト製品の高機能化 や生産性などの向上が求められている。また、図-1.1³⁾に示すように、維持・補修管理の時 代へシフトしている観点からも維持補修関係に用いられるモルタル材料について、工期短 縮を目的とした材料面の早強性や耐久性向上などの性能向上が求められている。

注)「建設工事施工統計調査」における「維持・修繕工事」とは,新設工事以外の工事をいい,既 存の構造物及び附属設備の従前の機能を保つために行う経常的な補修工事,改装工事,移転工 事,災害復旧工事及び区画線設置等の工事(作業)を含む。

それに加えて、地球温暖化対策の観点からは、二酸化炭素排出量削減が地球規模での課題である。そのため、環境負荷低減を目的とした産業廃棄物や副産物の積極的利用も推進されている。例えば、ポルトランドセメントの一部を高炉スラグ微粉末やフライアッシュなどの混和材に置換した環境配慮型コンクリート^{4),5)}が実用化されてきている。しかしな

がら、このような高炉スラグ微粉末やフライアッシュの活用方法は、ポルトランドセメントと同程度の粉末度(平均粒形で10~20µm 程度)の領域での活用手法である。

ここで、プレキャスト製品の高機能化や生産性向上、工期短縮を目的とした補修材料の 早強性や耐久性向上を目指す方法として、工法を含めて様々な手法が行われている。例え ば、プレキャスト製品の高機能化や生産性向上については、水結合材比の低減、蒸気養生 時の前置き時間の短縮や最高温度の高温度化などが行われており、蒸気養生時の燃料費の 増加や急激にセメントを反応させることによる耐久性低下などの問題⁶⁾が発生している。 また、水結合材比の低減や、耐久性向上を目的にセメントより細かい領域の粒径の高炉ス ラグ微粉末をセメントの一部に混和する手法が用いられているが、最適な粒径の組み合わ せでないため、粘性などが大きくなり作業性低下を招いている。その上、プレキャスト製 品の配合は、蒸気養生により強度の増進が少ないことや細孔構造が粗となることなどから、 現場打設のコンクリートと比べて、水結合材比が 10%程度低い配合となっていることが一 般的である。今後のプレキャスト製品の高機能化の観点からは、更なる水結合材比の低減 により、作業性の改善が求められている。

補修関連のモルタル材料などの工期短縮を目的とした材料面の早強性改善については、 水結合材比の低減などの手法があるが、水結合材比の低減により、練り混ぜ時間や練り混 ぜ負荷の増加(生産効率の低下)や、作業性悪化などの課題もある。この課題を解決する 手法として、マイクロフィラー効果が期待される平均粒形で 0.2~0.4µm 程度のサブミクロ ン領域のシリカフュームを用いることが一般的である。しかしながら、日本国内で使用さ れているシリカフュームは、海外からの輸入がほとんどで、安定供給面で不安が多い。ま た、シリカフュームは、メタシリコンやフェロシリコンを製造する際の副産物として発生 するため、品質のバラツキが大きく、その品質管理に手間を要する。そのうえ、海外から の輸入品であることなどから、コンクリート用の混和材料として使用する際のコスト面で も、比較的高価な混和材料である。

その他のコンクリート用混和材料として用いられる無機材料としては,高炉スラグ微粉 末やフライアッシュが一般的である。高炉スラグ微粉末は,製鉄所で発生する副産物であ り、フライアッシュは,火力発電所から発生する副産物である。そのため,比較的安価で あり、かつ安定的で,日本国内で発生するため、多量に入手が可能であり,用途拡大が求 められている。しかしながら,高炉スラグ微粉末やフライアッシュをコンクリート用混和 材料として使用する場合,ポルトランドセメントと同程度の粉末度(平均粒形で10~20µm 程度)の領域で混和することが多い。そのため,高炉スラグ微粉末やフライアッシュをシ リカフュームと同様な効果が得らえる活用方法を考える必要がある。また、セメントとシ リカフュームの中間的な粒径のシングルミクロン領域の粒径を有する混和材料がほとんど ないことから、シングルミクロン領域の粒径を有する混和材料を開発することで、補修関 連のモルタル材料やコンクリートに高機能化が得られる可能性も考えられる。

1.2 研究の目的および技術的背景

前節で示した社会的背景から、以下に示す要求性能や課題が主に挙げられる。

- ・日本国内において,産業副産物として多量に,かつ安定的に入手できる混和材料として,高炉スラグ微粉末とフライアッシュがあり,用途拡大が求められている。
- ・作業性や低水結合材比領域の練り混ぜ性能などの改善手法としてシリカフュームを 用いることが一般的であるが,供給面,品質面,および価格面で課題が多い。
- ・セメントとシリカフュームとの中間的な粒径であるシングルミクロン領域の混和材料がほとんどなく、使用事例や研究がほとんど行われていない現状である。

よって、シリカフュームと同様に活用できるシングルミクロン領域の粒径を有する混和 材料の開発研究を行うこととした。

シングルミクロン領域の超微粉末における使用事例や研究はほとんど行われていないの が現状であるが、非連続粒度系の 2~4 成分の粉体に対して最密充填状態を与える成分数、 粒子径、配合比に関する簡便な計算法である Furnace の最密充填理論⁷⁾に基づいて、ポル トランドセメントとシリカフュームを用いた場合、既往の研究⁸⁾によると、ポルトランド セメントとシリカフュームとの中間的な粒子径である 1~2µm 程度の中間粒径が必要であ ると考えられている。しかしながら、この 1~2µm 程度の粒径は、コンクリート混和材料 の分野においてほとんど用いられていないのが現状であり、副産物としても発生していな い。このような技術的理由からも、日本国内で多量に発生する産業副産物である高炉スラ グ微粉末およびフライアッシュに着目し、これまであまり知見の得られていないレベルま で超微粉末化を行い、研究を行うことは有効であると考えられる。

ここで、低水結合材比のモルタルやコンクリートにおける技術的な課題として、ワーカ ビリティーやポンプ圧送性などが挙げられる。例えば、化学混和剤の添加により、流動性 は向上するが、目視や V 漏斗などの流動性評価手法では軟らかいと感じられたモルタルや コンクリートでも、実際に練り返しなどを行うと、変形の与え方によっては、瞬間的に固 体化し、閉塞や充填不良などの問題が発生する場合がある。これは、高濃度サスペンショ ンであるフレッシュコンクリートのせん断抵抗の大小により発生しており、その大部分が 固体粒子間の接触や摩擦に起因したものと考えられる。その挙動は、レオロジー的には、 せん断ひずみ速度の変化に伴うせん断応力の一時的な増加である「ダイラタンシー性状」 に起因するものである。ここで、ダイラタンシー性状の緩和手法としては、シリカフュー ムなどの超微粉末の混和などによる充填性の向上が有効であると報告⁹⁾されているが、多 くは、経験則によるものである。そのため、どのような粉体特性、粒径、あるいは粒度分 布の微粉末材料をどの程度混和すれば、ダイラタンシー性状を緩和できるのか知見がほと んどない現状である。サブミクロン領域の混和材料であるシリカフュームを使用すること により充填性が向上という経験的な結果から、本研究で開発を行うシングルミクロン領域 の粒径を有する高炉スラグ微粉末やフライアッシュを活用することで、ダイラタンシー性 状を緩和できる可能性がある。そこで、低水結合材比の領域でのダイラタンシー性状の発 生因子について解明を行うとともに、シリカフュームと同様にダイラタンシー性状を緩和 するシングルミクロン混和材料の最適と考えられる粒径や置換率などの条件についての研 究も同時に行うこととした。

また,現場レベルでのダイラタンシー性状の改善は,その定量的な評価手法が確立され ていないことから,経験則により,定性的な判断により実施している。そのため,現場レ ベルでの簡易的なダイラタンシー性状の評価方法も求められている。細貝らの研究⁹⁾では, 経験則でなく,精度の高い簡易的な評価手法について研究を行っており,この研究を参考 とし,現場レベルで精度の高い簡易的な評価手法について研究を行うこととした。

1.3 論文の構成

本研究は、8章で構成され、論文の構成を図-1.2に示す。

図-1.2 論文の構成

第1章「序論」では,シングルミクロン領域の混和材料に期待される各種性状に関する 社会的および技術的な背景,および研究の目的を記述した。

第2章「本研究に関する既往の研究」では、本研究に関連したダイラタンシー性状、微 粉末混和材料などの既往の研究について記述した。

第3章「シングルミクロン高炉スラグ微粉末およびフライアッシュの基本特性」では, シングルミクロン混和材料の基本特性の把握を行った。日本国内で多量に発生する産業副 産物である高炉スラグ微粉末およびフライアッシュに着目し,これまであまり知見の得ら れていないレベルまで超微粉末化を行い,超微粉末領域の混和材の基礎特性をモルタルレ ベルで研究を行い,モルタル材料やコンクリートにおいて各種性能向上の可能性について 総合的に評価した。シングルミクロン高炉スラグ微粉末は、シリカフュームと比べて,お もに「初期強度の向上」,「粒径の割に乾燥収縮が小さい」,「ダイラタンシー性状(作業性) の改善」などの改良の可能性がある知見を得た。シングルミクロンフライアッシュは、シ リカフュームと比べて,「収縮が小さい」,「長期強度はシリカフュームと同程度まで発現す る」などの改良の可能性がある知見を得たが、更なる小径化の必要が考えられた。

第4章「低水結合材比におけるダイラタンシー特性」では、低水結合材比における課題 の一つであるワーカビリティーの低下やポンプ圧送性の悪化などの原因として考えられて いるダイラタンシー性状の発生因子の特定を行うとともに、最適と考えらえる配合の検討 と、現場レベルでの簡易的なダイラタンシー性状の定量評価手法の検討を行った。ダイラ タンシー性状は、濡れ性や円形度などの粉体特性よりも、粒径が発生因子であることを把 握した。とくに、1µm より小さい粒径の粒子を混和することが、ダイラタンシー性状の緩 和に必須な粒径である知見を得た。現場レベルでの簡易的なダイラタンシー性状の定量評 価手法は、回転粘度計から得られる定量値である塑性粘度と、各種簡易的な定量評価手法 との相関の確認を行い、定量評価手法の可能性を見出した。

第5章「シングルミクロン高炉スラグ微粉末の乾燥収縮」では,第3章で得られた知見 である粉末度の割に収縮が小さい理由について,高炉スラグ微粉末の細孔構造に着目し, メカニズムの解明を行った。粒径が小さくても細孔構造である BET 比表面積が小さい高炉 スラグ微粉末ほど,乾燥収縮は低減できる知見を得た。そのため,今後のシングルミクロ ン高炉スラグ微粉末の製造方法への応用が期待される。

第6章「シングルミクロン高炉スラグ微粉末の実モルタル製品への適用」では,シング ルミクロン高炉スラグ微粉末の基本特性から得られた各種性状の可能性について,モルタ ル注入材料と耐硫酸性の左官モルタル塗り材料のモルタル製品での検証を行った。モルタ ル注入材料では、流動性および初期強度発現性は向上し、実部材での注入性状も良好とな り、モルタル注入材料への適用は、性能向上に繋がることを検証した。左官モルタル塗り 材料では、流動性を調整するための混和剤使用量を大幅に低減し、初期強度の向上、乾燥 収縮の低減、耐硫酸性の向上を確認した。実施工を想定したコテ塗り性も良好で、硬化後 のダレや剥がれなども確認されず、左官モルタル塗り材料の性能向上に繋がることを検証 した。

第7章「高強度コンクリートでのシングルミクロン混和材料の性能検証」では、本研究 で開発したシングルミクロン高炉スラグ微粉末およびフライアッシュについて、高強度コ ンクリートでの検証を実施した。ダイラタンシー性状は、モルタルと同様に、1µm より小 さい粒径の粒子を混和することが、ダイラタンシー性状の緩和に必須な粒径である知見を 得た。その他のフレッシュ性状、強度特性、および収縮特性においても、シリカフューム を用いた高強度コンクリートと同等以上の特性となり、シングルミクロン混和材料の高強 度コンクリートでの実用性が確認された。高強度コンクリートの課題である耐火性能につ いては、シングルミクロン高炉スラグ微粉末、シングルミクロンフライアッシュ、および シリカフュームの順で良好となり、これらの実験結果について記述した。

第8章「結論」では、これまでの7章を含めた結果をまとめ、結論として記述した。

参考文献

- 1) 国土交通省:社会資本の老朽化対策情報ポータルサイト インフラメンテナンス情報 https://www.mlit.go.jp/sogoseisaku/maintenance/02research/02_01.html
- 2) 市村靖光ほか:コンクリート工の生産性向上のためのプレキャスト化の推進について, 第 34 回建設マネジメント問題に関する研究発表・討論会講演集, pp.85-88, 2016
- 3) 国土交通省:国土交通白書 第3節 社会インフラの維持管理をめぐる状況 https://www.mlit.go.jp/hakusyo/mlit/h25/hakusho/h26/html/n1133000.html
- 4) 溝渕麻子ほか:環境配慮型コンクリートの基礎的性質に関する一考察, コンクリート工 学年次論文集, Vol.33, No.1, pp.215-220, 2011
- 5) 米澤敏男ほか:エネルギー・CO₂ミニマム (ECM) セメント・コンクリートシステム, コンクリート工学, Vol.48, No.9, pp.69-73
- 6) 寺川麻美ほか:プレキャストコンクリート製品の細孔構造に及ぼす養生条件の影響、コンクリート工学年次論文集, Vol.34, No.2, pp.469-474, 2012
- 7) 三輪茂雄:粉粒体工学,朝倉書店, pp.140-145, 1972
- 8) 河野克哉ほか:通常流込み成形で 460N/mm²の圧縮強度を発現する新規セメント硬化
 体,第24回シンポジウム論文集,pp.545-550,2015.10
- 9) 細貝朱里ほか:高炉スラグ微粉末を多量に含むモルタルのダイラタンシー性状および改善方法に関する検討,コンクリート工学年次論文集, Vol.41, No.1, pp.1055-1060, 2019

第2章

既往の研究

2.	1	概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
2.	2	ダイラタンシー性状に関する既往の研究・・・・・・・・・・・・・・・10
2.	3	本研究に関わる無機系混和材料に関する既往の研究・・・・・・・・・・14

2.1 概論

維持補修関係に用いられるモルタル材料の工期短縮を目的とした材料面の早強性や耐久 性の向上,およびプレキャスト製品の耐久性,生産性の向上の手法のひとつとして「低水 結合材比」が挙げられる。また,地球温暖化対策の観点からは,環境負荷低減を目的とし た産業廃棄物や副産物の積極的利用が望まれており,建設分野においては,シリカフュー ム,高炉スラグ微粉末,およびフライアッシュなどの産業系副産物の活用が行われている。 しかしながら,高炉スラグ微粉末やフライアッシュをコンクリート用混和材料として使用 する場合,ポルトランドセメントと同程度の粉末度(平均粒形で 10~20µm 程度)の領域 で混和することが多い。そのため、シングルミクロン領域の粒径を有する無機系混和材料 の研究がほとんど行われていない。

また、低水結合材比のモルタルやコンクリートにおける技術的な課題として、ワーカビ リティーやポンプ圧送性などの改善が挙げられる。これは、高濃度サスペンションである フレッシュコンクリートのせん断抵抗の大小により発生しており、その大部分が固体粒子 間の接触や摩擦に起因したものと考えられる。その挙動は、レオロジー的には、せん断ひ ずみ速度の変化に伴うせん断応力の一時的な増加である「ダイラタンシー性状」に起因す るものである。ここで、ダイラタンシー性状の緩和手法としては、シリカフュームなどの 超微粉末の混和などによる充填性の向上が有効であると報告されているが、多くは、経験 則によるものである。そのため、どのような粉体特性、粒径、あるいは粒度分布の微粉末 材料をどの程度混和すれば、ダイラタンシー性状を緩和できるのか知見がほとんどない現 状であり、ダイラタンシー性状に関する研究事例も少ないのが現状である。

よって、本章では、これまで行われているダイラタンシー性状に関する既往の研究を2. 2に、本研究で使用した産業系副産物混和材料である高炉スラグ微粉末、フライアッシュ、 およびシリカフュームに関する既往の研究を2.3に記述した。

2.2 ダイラタンシー性状に関する既往の研究

2.2.1 レオロジーの定義

レオロジーとは、物体に力を加えたとき、「流れる」、あるいは「変形する」という相互 関係を、時間変化とともに取り扱う広範な学問分野であり¹⁾、簡潔に記述すると、物質など を作り出すのではなく、作り出された物質の性質を評価、およびモデル化する学問である。 主として連続体を扱う弾性学、および流体力学と大きく相違する点は、レオロジーが流動 や変形の背景にある構造的特徴を考えながら、物体の力学的挙動を観察することにある。

レオロジーという言葉は、1929 年に米国の Eugine C.Bingham 教授によって始めて提案 された言葉であり、ギリシャ語の rheos (流れる) +logy (学問) に由来するものである²⁾。 ここで、物体の流動を分類するために次のように考えてみる。液体を 2 枚の並行平板 (間 隔 h) に挟み、 hを保って板をゆっくりと互いに逆方向に距離 x だけ移動させるとする。 この時、2 枚の板の相対速度 u は、u = dx/dtである。xの小さい場合、せん断ひずみは、 γ =x/h と表される。また、せん断ひずみ γ の時間微分であるせん断速度 γ を横軸に、せん 断応力 τ を縦軸に示したグラフを流動曲線と呼ぶ。この時、水などの流動曲線が原点を通 り直線を示す挙動をニュートン流体と呼ぶ。その比例定数を η_{pl} とし、

$$\tau = \eta_{pl} \times \gamma' \qquad [2.1]$$

と定義すると、 η_{pl} を塑性粘度³⁾ と呼ぶ。図-2.1 にレオロジー曲線を示す。理想的なニュートン流体、例えば水は、静水圧以外の力が少しでも作用すると流動し、力を除いても変形はまったく回復しない。一方で、フックの法則に従う理想的な弾性体は、加えられた応力に対して瞬時に変形を生じるが、応力を除くと元の状態に復元する。ところが、塑性流体と呼ばれる物体は、ある応力レベルまでは流動せずに弾性的な挙動を示し、臨界の応力以上で流動を開始する。この時の応力を降伏値 τ_f と呼び、流動開始後はニュートン流体的な挙動を示す。このような物体はビンガム流体と呼ばれる。そこで、Bingham は、降伏値以下の応力範囲ではフックの法則に従う弾性体として、また降伏値以上の応力範囲ではニュートンの粘性法則に従うとして、2.2 式に示すビンガムモデルを提案した⁴⁾。

$$\tau = \eta_{pl} \times \gamma' + \tau_f \qquad [2.2]$$

図-2.1 にビンガム流体の流動曲線を示す。Bingham がビンガムモデルを提案したのとほ ぼ同時代に、コロイド粒子分散系の構造に基づく多様な流動挙動として、せん断速度の増 加とともに粘性が見かけ上減少する「チクソトロピー現象」や、逆にせん断速度の増加と ともに粘性が見かけ上増加する「ダイラタンシー現象」に関する知見が得られた²⁾。

図-2.1 各種レオロジー曲線

2. 2. 2 ダイラタンシー性状に関する研究

片栗粉やコーンスターチと水を混ぜた濃厚な懸濁液は、ダイラタント流体(ダイラタン シー流体)と呼ばれ、せん断応力がある値を超えると粘性が不連続に増加する激しいずり 粘化(shear thickening)を起こす⁵⁾。このずり粘化の発生メカニズムについては、「粉体粒 子の接触摩擦によるジャミングが原因とする説」と、「粉体のレイノルズ膨張によって発生 する間隙流体の負圧を原因とする説」が知られており、この2種類の共存により、ダイラ タンシー性状が発生していると考えられている。

簡潔に記述すると、ダイラタンシーとは、液体と固体粒子が混合する混相流体において、 静止状態では固体粒子のわずかな隙間に液体が入り込むため、密に充填される。そこに外 力(せん断力)が作用し、変形する際に固体粒子が密な状態から粗な状態に移ろうとする。 この時、粒子は見かけ上膨張し、間隙を充填している液体に負圧を生じ、粒子同士が引き 寄せられ粒子の移動、および回転する際の摩擦抵抗(粘度)が増大する現象である。

一方で、固体粒子が密に詰まった状態では、せん断変形を与えると粒子は隣り合う粒子 を乗り越えなければ移動することができず、体積は膨張し、図-2.2 に示すようにせん断抵 抗は大きくなる。逆に、緩く詰まった状態では、体積は収縮し、図-2.3 に示すようにせん 断抵抗は小さくなる。前者を正のダイラタンシー性状、後者を負のダイラタンシー性状と いう。

正のダイラタンシーにおいて,外力(圧縮力)と抵抗する内部抵抗力(体積変化=膨張 に伴う力=ダイラタンシー)が生じると,全体として,せん断応力に対してまるで固体の ような抵抗を示す状態に移行する。しかしながら,外力を加えるのを止めてしまえば,粒 子の隙間が広がって,圧縮力と抵抗する力がともに働かなくなり,元の状態に戻る。 体積変化は、粒子間の間隙の大きさが変化することに生じるが、間隙が水で満たされて いるモルタルにおいて、その挙動は複雑なものとなる^{6,7)}。塗料やインクなどの分野では、 このダイラタンシー性状のメカニズムの解明などの研究が実施されている^{例えば、8)、9)}。一方 でセメントの水和反応や骨材因子が加わるモルタルやコンクリートにおいては、ダイラタ ンシー性状の挙動がより複雑であるため、発生の要因となる因子や発生メカニズムの解明、 現場レベルでの簡易的な評価方法などがほとんど研究されていない現状である。

2.2.3 材料分野におけるダイラタンシー性状に関する研究

これまでの材料分野では、コンクリートの高強度化、またはリサイクル材料に用いた研 究において、低水結合材比、または高粉体量のフレッシュコンクリート、およびフレッシ ュモルタルでダイラタンシー性状に近い性状が確認されている。

岩田らの研究¹⁰⁾では、ダイラタンシー性状を示すフレッシュモルタルのダイラタンシー 性状の評価方法、およびダイラタンシー性状の改善方法について研究を行っている。JIS A 1147「コンクリートの凝結時間試験方法」に用いられるプロクター貫入試験装置を用い、 ダイラタンシー性状を定量的に評価することを試みている。また、高粉末度の粉体を用い ることで、ダイラタンシー性状の改善を試みた結果、粉体構成における質量比 40%の高炉 スラグ微粉末 4000 に対し、シリカフュームを 5%置換することで、貫入抵抗値を半減でき ることを示唆している。また、粉体構成における質量比 60%の高炉スラグ微粉末 4000 に 対し、シリカフュームを 5%置換することで、貫入抵抗値を 1.6N/mm²から 0.0N/mm²まで 低減できるとしている。なお、ブレーン比表面積で 10,000cm²/g 程度の高炉スラグ微粉末 を高炉スラグ微粉末 4000 に対して、全置換した水準では、モルタルフロー値の低下、およ び貫入抵抗値の上昇が確認されている。

細貝らの研究¹¹⁾では,ダイラタンシー性状が顕著に発生したブレーン比表面積で 6,000cm²/g,または10,000cm²/gの高炉スラグ微粉末を用いた場合のモルタルに,0~10% の割合で結合材に対してシリカフュームを内割り置換した場合,シリカフューム置換率が 大きくなるほどダイラタンシー性状は緩和される結果となっている。

これらの研究事例のように、材料分野におけるダイラタンシー性状に関する研究事例は 少ない。そのため、ダイラタンシー性状の発生要因となる因子や発生メカニズムの解明、 現場レベルでの簡易的な評価方法などに関する研究を積極的に実施する必要があると考え られる。

2.3 本研究に関わる無機系混和材料に関する既往の研究

2.3.1 高炉スラグ微粉末

高炉スラグ微粉末とは、高炉から排出された溶融状態の高炉スラグを高速の水や空気を 多量に吹付けて急冷粒状体とし、これを微粉砕し、調整したものである。高炉スラグ微粉 末は、おもに高炉セメントの原料として用いられているが、温度上昇の抑制、海水や硫酸 塩に対する化学抵抗性の向上、アルカリ骨材反応の抑制、凍結融解抵抗性の向上など、コ ンクリートの耐久性や水密性の向上を目的として使用されている。さらに、ブレーン比表 面積を指標として、JIS A 6206「コンクリート用高炉スラグ微粉末」では、3,000cm²/g、 4,000cm²/g、6,000cm²/g、および 8,000cm²/g の 4 種類のグレードが設定され、現在では、 10,000cm²/g のグレードが製造されている。

高炉スラグ微粉末は、不安定ガラス質であるため、潜在水硬性を有し、コンクリートの 強度、および耐久性を向上させ^{12),13),14)}、アルカリ骨材反応の抑制、および材料分離抵抗 性にも優れているという報告^{15),16)}がされている。また、高炉スラグ微粉末を添加すると ブリーディング水の発生が若干多くなるが、より微粉末化させることにより、水和反応が 早まり硬化体の組織が緻密化され、フレッシュコンクリートのワーカビリティーの向上、 およびブリーディング抑制を達成することができるとも報告^{17),18)}されている。最近では、 地球温暖化の観点から、ポルトランドセメントの一部を高炉スラグ微粉末やフライアッシ ュなどの混和材に置換した環境配慮型コンクリートの研究が積極的に行われ^{19),20)}、環境配 慮型コンクリートの実用化されてきている。

粒径が 10µm より小さい領域であるシングルミクロン領域の高炉スラグ微粉末に関して は、高炉スラグ微粉末の粉末度の違いによる乾燥収縮特性²¹⁾ や、超高強度コンクリートの 耐久性²²⁾、粉末度および置換率が長期強度発現に及ぼす影響などの研究²³⁾ 事例がある。し かしながらが、シングルミクロン領域の高炉スラグ微粉末に関する研究事例が少なく、初 期強度発現性やダイラタンシー性状の改善に着目した研究がないのが現状である。

2. 3. 2 フライアッシュ

フライアッシュとは、石炭火力発電所などで石炭を微粉砕した微粉炭を燃焼した際に発 生する石炭灰のうち、集じん装置で集められたものである。ボイラの中で燃焼され溶融状 態となった灰の粒子は、高温ガス中を浮遊し、ボイラ出口で冷却されるに伴い球形の粒子 となって集じん装置で捕捉される灰である。良質のフライアッシュは、比表面積で 5,000cm²/g 以上、密度 2.0~2.4g/cm³の微粉末状の副産物である。フライアッシュは、そ れ自身に水硬性はないが、セメントの水和によって生じた水酸化カルシウムと水の存在の もと、常温で化合し、不溶性の珪酸カルシウム水和物を生成する性質があり、これをポゾ ラン反応と呼ぶ²⁴⁾。さらに、強熱減量やブレーン比表面積を指標として、JIS A 6201「コン クリート用フライアッシュ」では、I種~IV種まで4種類のグレードに大別されている。

フライアッシュは、形状が球形に近いので、コンクリートに混和した場合は、いわゆる ボールベアリング作用によってセメントペーストの流動性が向上する。そのため、ワーカ ビリティーが向上し、単位水量を低減²⁵⁾することが可能となる。フライアッシュを用いた コンクリートでは、その置換率の増加とともに初期の強度発現性は低下するが、フライア ッシュのポゾラン活性により緩やかではあるが長期間の強度発現性を示し、配合によって はフライアッシュを用いないコンクリートと同等、あるいはこれを上回る強度を有する知 見²⁶⁾がある。その他には、強度発現性が緩やかであることより、発熱量の低減²⁷⁾、ポゾラ ン反応性生物の析出により細孔組織が緻密化され、水密性の向上²⁸⁾、耐硫酸性の向上²⁹⁾、 アルカリ骨材反応の抑制³⁰⁾、乾燥収縮や自己収縮の低減³¹⁾などの知見が知られている。

シリカフュームと同様にポゾラン反応を有するフライアッシュを超微粉末化し,高強度 コンクリート混和材として利用する研究はいくつか実施されている。既往の研究^{32),33)}で は、平均粒径 5µm 程度のサイズのシングルミクロンのフライアッシュを用いた強度特性を 把握している。しかしながら、5µm 以下の領域(平均粒径 0.8~2µm 程度)の研究例や、 作業性や練混ぜ性能などに着目した研究は少ない。また、サブミクロン領域の粒径のフラ イアッシュ超微粉末の製造の際には湿式粉砕による手法がほとんどであり、乾式粉砕によ る製造手法はほとんど実施されていないのが現状である。

2. 3. 3 シリカフューム

シリカフュームとは、シリコン、フェロシリコン、またはシリコン合金などを製造する 際に生じる排ガス中に含まれる SiO₂を、バグフィルタなどの集じん装置で集めて得られる 超微粒子状の産業副産物である。シリカフュームは、シリカフラワー、シリカダスト、マ イクロシリカ、活性シリカ、アモルシリカ、コンデンスシリカフュームなど多くの呼び名 があるが、シリカフュームが一般的呼称となっている。

また,金属シリコンやフェロシリコンなどの製造には多量の電力を必要とするため,電力の比較的安価な北欧諸国,カナダ,アメリカ,エジプトなどで盛んにシリカフュームの 有効利用が行われてきた³⁴⁾。

シリカフュームの比表面積は, BET 法によると約 15~25m²/g であり, セメントと比較 し約 40~70 倍という非常に細かい超微粒子である。また,粒子直径 0.1~0.5μm という平 均粒径を持ち、セメントより約100倍小さく、高炉スラグ微粉末などの結合材とは異なり、 ほぼ球形の超微粉末ポゾラン物質である。シリカフュームをコンクリートに混入すると、 ポゾラン反応速度が比較的速く、粒子直径 0.1~0.5µm というセメントより約 100 倍微細で あるため、セメント硬化体の空隙を充填するマイクロフェラー効果により、硬化体組織を より緻密化することで、強度を向上させ、透水性を小さくすることができ、塩化物イオン、 および二酸化炭素などのコンクリートの耐久性に影響を及ぼす化学物質の進入を抑制する 効果,水分吸着によってブリーディングを抑制する働きが報告 ^{35),36)} されている。 さらに, 粒子が球状に近いことより、水結合材比が小さい配合において、他の結合材と使用した場 合と比較し,フレッシュコンクリートの粘性を低減する効果があるとされている。その一 方で、岳尾らの研究³⁷⁾によると、水分吸着によって単位水量も増大するため、高性能 AE 減水剤の併用や十分な練混ぜが必要とされている。また、シリカフュームの混和により、 コンクリートの流動性は低下するが、練混ぜミキサの消費電力を指標とした時、低水結合 材比の領域においては、シリカフュームを混和したコンクリートの方の練り混ぜが短縮さ れ、練り混ぜに要するエネルギーも少ないという報告³⁸⁾もされている。

このようにシリカフュームは、セメント硬化体中の空隙を充填する作用を有しており、 硬化体組織は緻密化し、コンクリートの強度および耐久性向上に大きく寄与するため、高 強度コンクリートにおいて高強度混和材料として広く利用されている。しかしながら、日 本国内で使用されているシリカフュームは、海外からの輸入がほとんどで、安定供給面で 不安が多い。また、シリカフュームは、品質のバラツキが大きく、その品質管理に手間を 要する。そのうえ、海外からの輸入品であることなどから、コンクリート用の混和材料と して使用する際のコスト面でも、比較的高価な混和材料である。

参考文献

- 1) 岡小天:レオロジー入門,工業調査会, pp.237-240, 1970
- 2) 中川鶴太郎ほか:レオロジーとは何か,みすず書房,1956
- 3) 下山善秀: フレッシュコンクリートの変形に関する基礎的研究, pp.17-127, 1988
- 4) 中江利昭:レオロジー工学とその応用技術、フジ・テクノシステム、p.37, 2001
- 5) 永弘進一郎ほか:ダイラタント流体のずり粘化メカニズムと負圧を伴う粘化領域,ソフトマスター研究会, All Rights Researved, 2013
- 6) 大村修太朗ほか:回転粘度計を用いたフレッシュモルタルのせん断変形時における間隙 水圧の変化に関する実験的研究,コンクリート工学年次論文集,Vol.31,No.1, 2009
- 7) 三島直生ほか:フレッシュモルタルのレオロジー性質に及ぼすセメント粒子の凝集および液状化の影響に関する実験的研究,日本建築学会構造系論文集, pp.9-13, 2001
- 8) 葛谷稔ほか:高濃度顔料/水分散系における高分子分散剤の働き,年次大会・抄紙セッション B1, pp.97-103, 1995
- 9) 中村浩:車載用電池電極材料の成膜技術の革新-ダイラタンシーの発現メカニズムと抑 制方法-,特集 粉体材料の合成および利用を支える粉体技術, The Micromeritics, No.62, pp.30-38, 2019
- 10) 岩田正幸ほか: クリンカーフリーモルタルにおける各種アルカリ刺激材の検討と流動 性に関する研究, コンクリート工学年次論文集, Vol.32, No.1, 2010
- 11) 細貝朱里ほか:高炉スラグ微粉末を多量に含むモルタルのダイラタンシー性状および 改善方法に関する検討、コンクリート工学年次論文集, Vol.41, No.1, pp.1055-1060, 2019
- 12) 三岩敬考ほか:各種微粉末がフレッシュモルタルの諸特性に及ぼす影響, セメント・コ ンクリート論文集, No.52, pp.406-410, 1998
- 13)町田篤彦:高炉スラグ微粉末を混和したコンクリートの水密性に関する研究、高炉ス ラグ微粉末のコンクリートへの適用に関するシンポジウム論文集、土木学会、1987
- 14) 近松竜一ほか:高炉スラグ微粉末を用いたコンクリートの耐凍害性,コンクリート工 学年次論文報告集,11(1),日本コンクリート工学協会,1989
- 15) 川口修宏ほか:高炉スラグを多量に使用したコンクリートの基礎的物性、セメント・コンクリート論文集、No.50、pp.210-215、1996
- 16) 權寧瑳ほか:モルタル供試体による高強度コンクリートを対象とした高炉スラグ微粉 末のアルカリ骨材反応抑制効果に関する実験,セメント・コンクリート論文集, No.47, pp.414-419, 1993
- 17) 依田彰彦ほか:高炉スラグ微粉末を 20, 45, 65%内割添加したコンクリートの性質, セメント・コンクリート論文集, No.43, pp.132-137, 1989

- 18) 依田彰彦ほか: 微粉末化した高炉スラグを混和材として用いたモルタル・コンクリート の強度, セメント・コンクリート論文集, No.42, pp.92-95, 1988
- 19) 溝渕麻子ほか:環境配慮型コンクリートの基礎的性質に関する一考察, コンクリート 工学年次論文集, Vol.33, No.1, pp.215-220, 2011
- 20) 米澤敏男ほか:エネルギー・CO₂ミニマム (ECM) セメント・コンクリートシステム, コンクリート工学, Vol.48, No.9, pp. 69-73
- 21) 李長江ほか:高炉スラグ微粉末を用いたモルタルの細孔構造と乾燥収縮, コンクリート工学年次論文報告集, Vol.20, No.2, pp.187-192, 1998
- 22) 宮澤祐介ほか:高炉スラグ微粉末を用いた超高強度コンクリートの耐久性, コンクリ ート工学年次論文集, Vol.39, No.1, pp.1297-1302, 2017
- 23) 宮澤祐介ほか:高炉スラグ微粉末の比表面積および置換率がコンクリートの長期強度 発現に及ぼす影響,日本建築学会構造系論文集,Vol.82,第 740 号, pp.1517-1526, 2017
- 24)内川浩:混合セメントの水和および構造形成に及ぼす混和材の効果、セメント・コンク リート、No.483、p.15-23、1987
- 25)藤田克己ほか:フライアッシュを用いたコンクリートに関する研究(その1 調合に関する検討),日本建築学会大会学術講演梗概集(関東),pp.41-42,1997
- 26) 平野利光ほか:石炭灰の利用 (その2), 電力土木, Vol.254, pp.69-75, 1994
- 27) 牧野真之ほか:フライアッシュを用いたマスコンクリートの諸性状に関する検討,コンクリート工学年次論文報告集, Vol.20, No.1, pp.103-108, 1998
- 28) 重松俊一ほか:分級フライアッシュを混入したコンクリートの耐久性について、土木 学会第43回年次学術講演会論文集,第5部,pp.34-36,1988
- 29) 鳥居和之:フライアッシュ,シリカフュームの使用によるモルタルの耐硫酸塩性の改善効果,セメント技術年報 42, pp.124-127, 1998
- 30) 長瀧重義ほか:フライアッシュによるアルカリ骨材反応の膨張抑制効果とそのメカニ ズム,土木学会論文集, V-12, Vol.414, pp.175-184, 1990
- 31) 木村正彦ほか:フライアッシュを用いた高流動コンクリートの室内物性試験および現 場実証試験,土木学会 フライアッシュコンクリートシンポジウム論文報告集, pp.105-112, 1997
- 32) 波多野眞司ほか:石炭灰の微粉砕化によるセメント混和材の開発, 土木学会論文集, Vol.63, No.1, pp.42-51, 2007
- 33) 石川嘉崇ほか:超微粉砕フライアッシュを用いたモルタルの基本的な性質, コンクリ ート工学, Vol.27, No.1, pp.181-186, 2005
- 34) (社)日本材料学会コンクリート混和材料部門委員会:コンクリート混和材料ハンドブック, pp.78-89, pp.352-369, 2004

- 35) 小管啓一ほか:シリカフュームのポゾラン反応と反応率測定方法, コンクリート技術 シリーズ No.4, 土木学会, pp.1-6, 1993
- 36)藤原浩已ほか:低粘度ペーストの諸特性に及ぼす各種混和材の影響, セメント・コンク リート論文集, No.55, pp.182-188, 2001
- 37) 山崎竹博ほか:シリカフュームを用いたコンクリートの流動特性に関する研究,セメ ント・コンクリート論文集, No.49, pp.408-413, 1995
- 38) 山口重英ほか:シリカフュームを混和したコンクリートの流動性および強度に及ぼす 練り混ぜの影響, コンクリート工学年次論文集, Vol.16, No.1, pp.389-394, 1994

第3章

シングルミクロン高炉スラグ微粉末および

フライアッシュの基本特性

3.	1	概論・・	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 20
3.	2	使用材料	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 21
3.	3	実験水準	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 23
3.	4	練り混ぜ	方法	֥	•	•	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 23
3.	5	実験項目	と評	価	方	去	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 25
3.	6	実験結果	およ	び	考	寮	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 31
3.	7	まとめ・	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• 42

3.1 概論

工期短縮を目的とした材料面の早強性改善については、水結合材比の低減などの手法が あるが、水結合材比低減により、練り混ぜ時間の増加(生産効率の低下)や、作業性悪化 などの課題もある。この課題を解決する手法として、マイクロフィラー効果が期待される 平均粒径で 0.2~0.4µm 程度の超微粉末のシリカフュームを用いることが一般的であるが、 日本国内で使用されているシリカフュームは、海外からの輸入がほとんどで、安定供給面 で不安が多い。また、シリカフュームは、メタシリコンやフェロシリコンを製造する際の 副産物として発生するため、品質のバラツキが大きく、その品質管理に手間を要する。そ のうえ、海外からの輸入品であることなどから、コンクリート用の混和材料として使用す る際のコスト面でも、比較的高価な混和材料である。

日本国内で副産物として発生するコンクリート用混和材料としては,高炉スラグ微粉末 やフライアッシュが一般的であり,高炉スラグ微粉末は,製鉄所で発生する副産物であり, フライアッシュは,火力発電所から発生する副産物である。そのため,比較的安価であり, かつ安定的で,多量に入手が可能である。

しかしながら、高炉スラグ微粉末やフライアッシュをコンクリート用混和材料として使 用する場合、ポルトランドセメントと同程度の粉末度(平均粒径で 10~20µm 程度)の領 域で混和することが多い。そのため、シングルミクロン領域の超微粉末における使用事例 や研究はほとんどないのが現状である。

また,非連続粒度系の 2~4 成分の粉体に対して最密充填状態を与える成分数,粒子径, 配合比に関する簡便な計算法である Furnace の最密充填理論¹⁾に基づいて,ポルトランド セメントとシリカフュームを用いた場合,既往の研究²⁾によると,セメントとシリカフュ ームとの中間的な粒子径である 1~2µm 程度の中間粒径が必要であると考えられている。 しかしながら,この 1~2µm 程度の粒径は,コンクリート混和材料においてほとんど用い られていないのが現状であり,副産物としても発生していない。そこで,日本国内で多量 に発生する産業副産物である高炉スラグ微粉末およびフライアッシュに着目し,これまで あまり知見の得られていないレベルまで超微粉末化を行い,シングルミクロンの粒径を有 する無機系混和材料の開発を行うこととした。

よって、本章では、シングルミクロン領域の高炉スラグ微粉末、およびフライアッシュ の基本特性を把握することを目的として、これらの粉末度および混和率を変化させ、最適 と考えられる粉末度および混和率の把握を行った。モルタルにおいてフレッシュ性状、お よび硬化性状について実験を行い、各種性状の向上の可能性について確認を行った。使用 材料を3.2に、実験水準を3.3に、練り混ぜ方法を3.4に、実験項目と評価方法を 3.5に、実験結果および考察を3.6に、本章のまとめを3.7に記述した。

3.2 使用材料

本章で使用した材料を表-3.1 に、レーザー回折式粒度分布測定器(Microtrac MT3300EXII)によって測定を行った体積基準の結合材の粒度分布を図-3.1 に示す。

ベースセメントは、JIS R 5210「ポルトランドセメント」に準拠した普通ポルトランドセ メント (ブレーン比表面積:3,350cm²/g) とし、基本特性を把握する混和材料は、粒径の 異なる 2 種類の高炉スラグ微粉末、およびフライアッシュとした。また、これら混和材料 の比較として、JIS A 6207「コンクリート用シリカフューム」に準拠したシリカフューム (BET 比表面積:16.7m²/g)を使用した。細骨材は、乾燥珪砂(絶乾密度:2.63g/cm³、吸 水率:1.22%、粗粒率:2.95)を用いた。

ここで、高炉スラグ微粉末は、JIS A 6206「コンクリート用高炉スラグ微粉末」に準拠した高炉スラグ微粉末 4000(石こうなし)をベースとし、粉砕および分級により、50%累積体積通過径(以下、D₅₀)で $3.5\pm0.5\mu$ m(ブレーン比表面積: 10,000cm²/g 程度)、および $1.5\pm0.5\mu$ m(ブレーン比表面積: 20,000cm²/g 程度)の 2 種類のシングルミクロン高炉ス ラグ微粉末を試製した。フライアッシュは、JIS A 6201「コンクリート用フライアッシュ」に準拠したフライアッシュ II 種をベースとし、高炉スラグ微粉末と同様に、粉砕および分級により、D₅₀= $3.5\pm0.5\mu$ m、および $1.5\pm0.5\mu$ mの 2 種類のシングルミクロンフライアッシュを試製した。表-3.2 に粉砕および分級のベースとして使用した高炉スラグ微粉末およ びフライアッシュの化学成分と物性を示す。

力折	十十 水기	記号		密度	D ₅₀	強熱減量			
名你	11 11			(g/cm ₃)	(μm)	(%)			
練混ぜ水	水道水		W	1.00	-	-			
セメント	普通ポルトランドセメント		N	3.16	17.1	1.03			
	シングルミクロン		BF3.7	2.91	3.66	0.55			
	高炉スラグ微粉末	D	BF1.7	2.91	1.73	0.59			
混和材	シングルミクロン	Б	FA3.2	2.53	3.20	1.65			
	フライアッシュ		FA1.7	2.56	1.70	2.80			
	シリカフューム		SF	2.25	0.39	1.64			
細骨材	乾燥珪砂		S	2.63	-	-			
汨和刘	高性能 AE 減水剤	SP		ポリカルボン酸エーテル系					
化化个日月小	消泡剤	DF		ポリアルキレングリコール誘導体					

表-3.1 使用材料

図-3.1 粉末材料の粒度分布

名称				ブレーン比表面積				
	ig.loss	SiO_2	Al_2O_3	Fe_2O_3	CaO	MgO	SO_3	(cm^2/g)
BFS4000	0.18	33.68	14.82	0.31	42.62	6.11	0.0	4,450
FAII種	1.68	56.31	30.79	4.31	1.86	0.49	0.2	4,220

表-3.2 高炉スラグ微粉末およびフライアッシュの化学成分と物性

3.3 実験水準

本章で比較した実験水準を表-3.3 に示す。低水結合材比の領域において、シングルミク ロン高炉スラグ微粉末およびフライアッシュの基礎特性を把握する必要があると考え、モ ルタルの配合は、JASS 5M-701「高強度コンクリート用セメントの品質基準」を参考とし、 水結合材比は 30%、結合材と細骨材の割合は質量比で B:S=1:1.4 とした。

JIS R 5211「高炉セメント」では、高炉スラグ微粉末の分量を、5%を超え、70%以下に 種類が分けられている。また、JIS R 5213「フライアッシュセメント」では、フライアッシ ュの分量を、5%を超え、30%以下に種類が分けられている。フライアッシュに関しては、 置換率が JIS R 5213 と比べると多いが、多量混和した場合の特性も把握したいため、JIS R 5211 を参考とし、本章の混和材の置換率は、セメントに対して内割の質量比で 30、50、お よび 70%とした。

ここで、これらシングルミクロン高炉スラグ微粉末およびフライアッシュを用いた水準 の基本特性を比較する基準の水準が必要である。そのため、セメントに対して高強度領域 の混和材として一般的に用いられるシリカフュームを 15%内割置換した水準と比較するこ ととし、合計 13 水準の実験を実施した。

混和材	混和材置換率(%)							
種類	15	30	50	70				
BF3.7		0	0	\bigcirc				
BF1.7		\bigcirc	\bigcirc	\bigcirc				
FA3.2		\bigcirc	0	\bigcirc				
FA1.7		\bigcirc	0	\bigcirc				
SF	0							

表-3.3 実験水準

3.4 練り混ぜ方法

練り混ぜは、JASS 5M-701 を参考とした。結合材であるセメントと各種混和材は、練り 混ぜ時に別々に計量して、練り混ぜ時に混合した。練り混ぜは、「空練 30 秒 \rightarrow 注水 \rightarrow 2 分練混ぜ \rightarrow 20 秒掻き落とし \rightarrow 2 分 40 秒練混ぜ \rightarrow 5 分静置 \rightarrow 30 秒練混ぜ」とした。ミ キサは、10L 容積のモルタルミキサを用い、練り混ぜ容量 2L とし、回転数 139rpm (低速) にて行った。

3.5 実験項目と評価方法

3.5.1 フレッシュ性状

フレッシュ性状の評価方法として、本章では、0打フローと空気量の測定を行った。0打 フローは、JIS R 5201「セメントの物理試験方法」に準拠したフローコーンを用いて、0打 のフローの測定を実施した。空気量の測定は、JIS A 1128「フレッシュコンクリートの空気 量の圧力による試験方法-空気室圧力方法」に準拠し、モルタルエアメータにより実施した。

0打フローは、フロー値が260±10mmの範囲となるように、高性能 AE 減水剤の添加量 によって調整を行った。空気量は、3.0%以下を目標とし、消泡剤添加率を DN/B=0.06% と一定とした。

以下に,0打フローの試験手順を示す。

- フローコーンの内側、および鋼製平板の表面を、あらかじめ乾燥した布などでよく 拭き取る。
- ② フローコーンを水平に設置した鋼製平板の上に設置し、試料をほぼ等量の2層に分けて詰める。
- ③ 突き棒の先端がその層の約 1/2 の深さまで入るよう、全面にわたって各々15 回突
 き、最後に必要に応じて不足分を補い、表面をならす。
- ④ 直ちにフローコーンを垂直方向に取り去り、広がりが静置するのを待って0打フロ ーを1mm単位で測定する。測定の際は、広がりの最大と思われる直径と、その直 行する方向の直径を測定し、両直径の平均値を1mm単位に丸めた値を0打フロー 値とする。

以下に,空気量の試験手順を示す。

- ① 試料を容器の約 1/3 まで入れ、ならした後、容器の底を突かないように各層を突き 棒で 25 回均等に突く。突き穴がなくなり、モルタルの表面の大きな泡が見えなく なるように、容器の側面を 10~15 回木づちなどでたたく。さらに容器の約 2/3 ま で試料を入れ、前回と同様の操作を繰り返す。最後に、容器から少しあふれる程度 に試料を入れ、同様の操作を繰り返した後、定規で余分な試料を掻き取ってならし、 モルタルの表面と容器の上面とを正しく一致させる。突き棒の突き入れ深さは、ほ ぼ各層の厚さとする。
- ② 容器のフランジの上面と、蓋のフランジの下面を完全にぬぐった後、蓋を容器に取り付け、空気が漏れないように締め付ける。最後にすべての弁を閉じる。
- ③ 空気ハンドポンプで空気室の圧力を初圧力よりわずかに大きくする。約5秒後に調 節弁を徐々に開いて、圧力計の指針が安定するように圧力計を軽くたたき、指針を 初圧力の目盛に正しく一致させる。約5秒経過後、作動弁を十分に開き、容器の側 面を木づちなどでたたく。
- ④ 再び,作動弁を十分に開き,指針が安定してから圧力計の目盛を小数点以下1けた

で読み、この値をモルタルの空気量とする。

3.5.2 粘性 (ダイラタンシー性)

作業性が悪化する要因として、モルタルやコンクリートにおいて、ダイラタンシー性状 が発生することに起因していることが、細貝らの研究³⁾により、知見が得られている。そ のため、粘性(ダイラタンシー性)の評価方法として、本章では、せん断速度の小さい領 域から測定可能な回転粘度計の一種である**写真-3.1**に示すレオメータ(Malvern Panalytical Kinexus pro)による定量評価を行った。測定には、長さ 21mm、羽根の直径 25mm の Vane プレートを使用し、測定時のトルクおよび角速度(羽根の回転数)からせん断速度とせん 断応力を算出した。なお、レオメータの測定に用いた試料は、**表-3.3**に示した水準の水結 合材比 30%の細骨材を除いたペースト配合とし、初期の降伏値を同程度で比較するため、 練り上がり時のフロー値を 110±10mm の範囲になるように高性能 AE 減水剤の添加量によ って調整を行った。なお、フローコーンは、 *φ*50×50mm のフローコーンを用いた。

レオメータを用い、せん断速度およびせん断応力を測定し、せん断速度が 50~100s⁻¹の 範囲の傾き(塑性粘度)を算出し、シリカフュームを用いた水準と比較し、その値が小さ いほどダイラタンシー性状の発生の程度は小さく、作業性が良好になると評価した。

以下に、レオメータでの試験手順を示す。

- ペースト試料を 20 回薬さじで撹拌後,速やかにレオメータ測定用ホルダーに試料 を投入する。
- ② せん断速度の測定範囲を 0~100 s⁻¹,測定頻度を 60 秒で 300 点数に設定し,上昇 および下降の測定を行う。
- ③ 測定終了後, Vane プレートと測定用ホルダーを水道水により水洗いを行い, 乾燥 した布などでよく拭き取る。

写真-3.1 レオメータ(回転粘度計)

3.5.3 圧縮強度

圧縮強度の評価は, JASS 5M-701 に準拠して測定を行った。材齢1日強度は, 注水から 24時間後に脱型した時点の強度とし, 材齢3,7,28 および91日強度は、24時間後の脱型 から20℃の水中で所定材齢まで養生を行った。

圧縮強度は、シリカフュームを用いた水準と比較し、その値が大きいほど、強度発現性 が良好になると評価した。

以下に, 圧縮強度の試験手順を示す。

- ① 圧縮強度用供試体は直径 5cm, 高さ 10cm とし, 3本以上とする。
- ② 2層以上のほぼ等しい層に分けて、各層5回の割合で突く。この場合、型枠内に連続的に流し込み、気泡を巻き込まないように注意する。
- ③ 試料を詰め終った供試体は、上面をラップなどで覆い、水分の蒸発を防ぐ。
- ④ 翌日まで、温度 20±1°C、湿度 80%以上の環境で湿潤養生を行う。
- ⑤ 注水から 24 時間後に,脱型を行い,速やかに温度 20±1℃の水中で養生を行う。
- ⑥ 所定の材齢となったら、水中から供試体を取り出し、研磨機を用いて研磨を行う。
- ⑦ 供試体の高さの中央で,互いに直交する2方向の直径を0.1mm 単位でノギスにより測定し,その直径の平均値 *d*(mm)を算出する。
- ⑧ 供試体の中心軸が圧縮強度試験機の加圧板の中心軸に一致するように静置する。
- ⑨ 供試体に衝撃を与えないような一様な速度で荷重を加える。荷重を加える速度は、 圧縮応力度の増加が、毎秒 0.2~0.3N/mm²となるようにする。

- ⑪ 供試体が急速な変形を始めた後は、荷重を加える速度の調整を中止して、荷重を加え続ける。
- (1)供試体が破壊するまでに試験機が示す最大荷重 P(N)を測定し,試験を終了とする。
- ② 以下の 3.1 式より, 圧縮強度 F_c(N/mm²)を算出する。

$$F_{c} = P / \{ \pi \times (d/2)^{2} \}$$
[3.1]

- F_c :供試体の圧縮強度(N/mm²)
- *P* :供試体の最大荷重(N)
- d :供試体の直径の平均値(mm)

を意味する。

3.5.4 乾燥収縮

乾燥収縮の評価は,JIS A 1129-3「モルタル及びコンクリートの長さ変化測定方法-第3 部:ダイヤルゲージ方法」に準拠して測定を行うとともに、その供試体を用いて、質量変 化率の測定(以下、質量変化率)を行った。注水から48時間までの養生は、NEXCO構造物 施工管理要領の「左官工法による断面修復の性能照査」の項目の硬化収縮性試験の養生期 間を参考とした。注水から48時間後を基準として、乾燥期間0,1,3,7,14,21,28, および91日にそれぞれ測定を行った。

乾燥収縮は、シリカフュームを用いた水準と比較し、その値が小さいほど、乾燥収縮は 低減でき、耐久性が向上すると評価した。

以下に, 試験手順を示す。

- 内のり寸法40×40×160mmのゲージプラグ付きモルタル供試体成型用型枠に試料 を充填し、表面をコテなどで平らにし、上面をラップなどで覆い、水分の蒸発を防 ぐ。なお、試験体は3本作成する。
- ② 温度 20±1℃,湿度 60±2%の環境下で 48 時間気中養生を行う。
- ③ 養生後,型枠を脱型し,モルタルコンパレーターを用い,直ちに試験体長さ X_{0l} , X_{02} を測定し,これを基長 L_0 とする。この時,試験体質量 $M_0(g)$ も測定する。
- ④ 測定後,温度 20±1℃,湿度 60±2%の状態で気中養生を行い,所定の乾燥期間に, それぞれの試験体長さ X_i, X_i2および試験体質量 M_i(g)を測定する。
- ⑤ 以下の 3.2 式および 3.3 式より,試験体の長さ変化率 △L(%)及び質量変化率 △ M(%)を算出し,長さ変化率(乾燥収縮)は小数点以下 3 桁に,質量変化率は小数 点以下 1 桁に丸める。

$$\Delta L = \frac{(X_{01} - X_{02}) - (X_{i1} - X_{i2})}{L_0} \times 100$$
[3.2]

$$\Delta M = \frac{M_0 - M_i}{M_0} \times 100$$
[3.3]

ここに,

- *△L* :長さ変化率(%)
- *L*₀ :基長^(注1)
- *X*₀₁, *X*₀₂ : それぞれ基準とした時点での測定値^(注1)
- *X_{i1}, X_{i2}* : それぞれ時点 i における測定値^(注1)
 - *△M* :質量変化率(%)
 - M_0 :それぞれ基準とした時点での質量(g)
 - M_i :それぞれ時点 i における質量(g)
 - (注1):これらはすべて同じ単位でなければならない。

を意味する。

3.5.5 自己収縮

自己収縮の評価は、JCI 自己収縮委員会試験方法(JCI-SAS2-2「セメントペースト・モル タルおよびコンクリートの自己収縮および自己膨張試験方法(案)」)を参考に埋め込みひ ずみ計(KM-100BT)を使用し、凝結の始発を、JIS A 1147「コンクリートの凝結時間試験 方法」に準拠し、測定した時間を基準とし、材齢7日まで測定を行った。

自己収縮は、シリカフュームを用いた水準と比較し、その収縮量が小さいほど、自己収 縮は低減でき、初期の温度応力ひび割れに対する抵抗性が向上すると評価した。

以下に, 自己収縮の試験手順を示す。

- 供試体の自由な変形が拘束されるのを防止するため、内のり寸法 100×100× 400mmの型枠の底面に厚さ 1mm のテフロンシート、両端部の内側に厚さ 3mm の ポリエチレンボードを入れる。
- ② 型枠内側の側面,端面および底面に厚さ 0.1mm のポリエステルフィルムを入れて, 供試体からの水分の発散を防止する。
- ③ 型枠の中央部に埋め込みひずみ計を結束線により設置する。
- ④ 温度 20±1℃,湿度 60±2%の環境下で,試料を型枠に2層に分けて流し込み,締 固めを行う。この際,埋め込みひずみ計が振動により移動しないように注意する。
- ⑤ 直ちに表面仕上げを行い, 試料からの水分の逸酸を防止するために, 仕上げ面をポ リエステルフィルムで覆う。
- ⑥ 型枠上面部に濡れたウエスを載せたら、さらにビニール袋を被せ、温度 20±1℃、 湿度 60±2%の環境下で養生を行い、データロガーを用いて供試体の収縮ひずみと 温度の測定を行う。
- ⑦ 注水から24時間後に供試体を脱型し、供試体全面にアルミ粘着テープを2重に貼り、ビニール袋の中に供試体を入れ、引き続き、データロガーで測定を継続する。

⑧ 以下の 3.4 式より、実ひずみ(自己収縮)を算出した。なお、供試体の熱膨張係数は、10×10⁻⁶/℃としてひずみの温度補正を行った。

$$\varepsilon_a = C_{\varepsilon} \times \varepsilon_i + C_{\beta} \times \Delta_t$$
[3.4]

ここに,

- *ε*_a :実ひずみ(×10⁻⁶)
- *C*_e : ひずみ計の校正係数
- *ε*_{*i*} : 初期値からの指示値の変化
- *C_β* : 熱膨張係数(×10⁻⁶/°C)

を意味する。

3.5.6 促進中性化

促進中性化試験の評価は,JISA1153「コンクリートの促進中性化試験方法」に準拠して 試験を行い,測定は,JISA1152「コンクリートの中性化深さの測定方法」に準拠して行っ た。

促進中性化は、シリカフュームを用いた水準と比較し、中性化深さが小さいほど、耐久 性が向上すると評価した。

以下に、促進中性化の試験手順を示す。

- 内のり寸法 40×40×160mm のモルタル供試体成型用型枠に試料を充填し、表面を コテなどで平らにし、上面をラップなどで覆い、水分の蒸発を防ぐ。なお、試験体 は3本作成する。
- 温度 20±1℃,湿度 60±2%の環境下で 24 時間気中養生を行う。
- ③ 注水から 24 時間後に, 脱型し, 前養生として, 材齢 4 週まで, 温度 20±1℃の水 中で養生を行う。材齢 4 週後, 温度 20±1℃, 湿度 60±2%の環境下で, 材齢 8 週 まで静置する。材齢 7~8 週の間に, 供試体の打ち込み面, 底面および両端面を, 二酸化炭素を遮断するため, アルミ粘着テープで2 重に貼る。
- ④ 材齢8週経過後,温度20±2℃,湿度60±5%,二酸化炭素濃度5±0.2%の促進中 性化試験装置へ設置する。
- ⑤ 所定の促進期間に達するまで、中性化の促進条件を継続して供試体に与える。
- ⑥ 測定面は,所定の促進期間に達した時点で,供試体の長さ方向と直角に供試体を端 部から約 20mm の位置で割裂または,切断した面とする。
- ⑦ 中性化深さの測定は、1 側面につき6等分した5カ所を行い、3本の平均値を中性 化深さとした。なお、測定には、フェノールフタレイン溶液を噴霧し、赤紫色に呈 色した部分までの距離を0.1mmの単位で測定した。

3.5.7 遮塩性

遮塩性の評価は、土木学会規準である JSCE-G 572「浸せきによるコンクリート中の塩化 物イオンの見掛けの拡散係数試験方法(案))」に準じて測定を行った。なお、塩化ナトリウ ム水溶液の浸せき前の養生は、温度 20±2℃の水中において、材齢 28 日まで行った。その 後、20±2℃の濃度 10%塩化ナトリウム水溶液に 1 年間浸せきを行った。

遮塩性は、シリカフュームを用いた水準と比較し、塩化物イオン濃度が小さいほど、耐 久性が向上すると評価した。

以下に、塩化物イオン濃度の測定の試験手順を示す。

- ① 浸せき試験に用いる供試体は直径 10cm, 高さ 20cm とし, 1 水準 3 本とする。
- ② 注水後,24時間後に脱型し,温度20±2℃の水中に所定の期間,水中養生を行い, 養生後,円柱供試体の両端面から約25mm部分を乾式カッターで切断し,高さを 150mm程度に成型する。
- ③ 養生期間中に、浸せき前の前処理として、温度 20±2℃、湿度 60±5℃の環境において、12 時間程度乾燥させた後、打ち込み側の円形の一面のみを残し、他の円形の1 面および円周面をエポキシ樹脂塗料で被覆する。このとき、円周面への被覆にあたっては、あらかじめ供試体表面の薄いセメントペースト層を除去する。
- ④ 被覆したエポキシ樹脂塗料が硬化するまで、温度 20±2℃、湿度 60±5℃の環境に 4 日間以上放置する。このとき、被覆していない供試体表面は、乾燥させないよう に注意する。
- ⑤ 被覆したエポキシ樹脂塗料の硬化後,温度20±2℃の水中で24時間以上保存する。
- ⑥ 前処理完了後,温度20±2℃,濃度10%の塩化ナトリウム水溶液に所定の期間浸せ きさせた。被覆していない開放面全面が常時溶液に接するように完全に浸せきする。
- ⑦ 浸せき溶液の量は、浸せきする供試体の合計の体積の2倍以上、かつ、溶液の表面が供試体の上面あるいは上端から20mm以上高くなるようにする。また、蒸発により溶液が減らないように、供試体を浸せきするための容器にふたをして密閉した。
- ⑧ 初期に含まれる全塩化物イオンは、前処理を行っていない、かつ、塩化ナトリウム 水溶液中に浸せきを行っていない供試体を使用し、全塩化物イオンを JIS A 1154 に準拠して測定を行った。
- ⑨ 浸せき期間完了後の供試体は、開放面に付着している塩化物イオンをイオン交換水で洗い流し、開放面から1cm間隔にて5cmの深さまで、乾式カッターを用いて分析用の試験片を切り出し、全塩化物イオンをJISA1154に準拠して測定を行った。

3.6 実験結果および考察

3. 6. 1 フレッシュ性状

フレッシュ性状の試験結果を表-3.4 に、水準ごとの SP 添加率を図-3.2 に示す。すべての 水準において、0 打フロー値は SP 添加率によって、目標値の 260±10mm の範囲に調整す ることができ、空気量も目標値の 3.0%以下となった。

BF3.7, および FA3.2 を使用した水準は, 混和材置換率が増加するとともに SP 添加率は 低減した。これは, セメントより粒径が小さいため, 混和材置換率の増加とともに粉体の 充填性が向上したためであると考えられる。BF1.7 を使用した水準は, 混和材置換率が 50% までは SP 添加率は低減し, 70%では若干増加することが分かった。これは, 超微粉末であ るため, 置換率 70%では, 超微粉末の割合が過剰であり, 高炉スラグ微粉末の表面への SP 吸着量が増加したためであると思われる。FA1.7 を使用した水準は, 混和材置換率の増加と ともに, SP 添加率も増加することが分かった。BF1.7 と同様に超微粉末であるため, フラ イアッシュ表面への SP の吸着量が増加したことに加え, FA1.7 の強熱減量は, FA3.2 の 1.65%に対して, 2.33%と大きい。そのため, FA1.7 の混和材置換率の増加とともに, 未燃 カーボン量も増加するため, 未燃カーボンへの SP 吸着量が増加したため, SP 添加率も大 きくなったと考えられる。

水準 No.	SP/B	0打フロー	練上り温度	空気量
(種類-置換率)	(%)	(mm)	(°C)	(%)
BF3.7-30	1.10	254	23.7	1.4
BF3.7-50	1.00	260	23.6	1.9
BF3.7-70	0.95	259	23.8	3.0
BF1.7-30	0.90	260	22.9	1.7
BF1.7-50	0.85	260	22.5	1.5
BF1.7-70	1.00	254	22.3	3.0
FA3.2-30	1.25	268	25.3	1.5
FA3.2-50	1.05	263	24.9	1.9
FA3.2-70	1.05	260	24.5	2.8
FA1.7-30	1.30	259	22.9	1.7
FA1.7-50	1.40	256	23.1	2.2
FA1.7-70	1.80	259	23.0	3.0
SF-15	2.80	268	24.9	2.2

表-3.4 フレッシュ性状

しかしながら、シリカフュームを混和材として用いた水準である SF-15 と比較すると、 すべての水準において半分程度の SP 添加率で、SF-15 と同程度の流動性が得られることが 分かった。これは、シリカフュームよりも粒径が大きく、比表面積は小さいため、混和材 自体への SP の吸着量が低減したためであると考えられる。

以上のことより,シングルミクロンの高炉スラグ微粉末およびフライアッシュを用いた 場合,シリカフュームと比較すると,半分程度のSP添加量で同一フロー値が得られるため, SP 使用量を低減できることが分かった。

図-3.2 各水準の SP 添加率

3. 6. 2 粘性 (ダイラタンシー性)

フロー値とレオメータで測定した試験結果を表-3.5 に、シングルミクロン高炉スラグ微 粉末を用いた水準のせん断速度とせん断応力との関係を図-3.3 に、シングルミクロンフラ イアッシュを用いた水準のせん断速度とせん断応力との関係を図-3.4 に示す。

表-3.5, 図-3.3 および図-3.4 より, せん断速度の増加とともにせん断応力が急激に増加す るダイラタンシー性は, BF1.7 を用いた水準を除いて, 混和材置換率が増加するほど, 顕著 に確認された。一方で, 混和材の粒径が小さくなるほど, ダイラタンシー性は低減でき, 最大応力も小さくなることが分かった。とくに, BF1.7-30 および FA1.7-30 の水準におい て, ダイラタンシー性はほとんど発生されなかった。しかしながら, シリカフュームを用 いた SF-15 は, ダイラタンシー性は確認されず, 一番粘性が小さく, 作業性に優れている と考えらえた。

以上のことより,高炉スラグ微粉末およびフライアッシュを用いた場合,シリカフュームと比較すると,シリカフュームと同様の作業性は得られないが,粒径が 1.7µm 程度で, その置換率が 30%とした場合,ダイラタンシー性の改善効果が大きいことが分かった。

水準 No.	SP/B	$\phi 50 \times 50 \text{mm}$	最大応力	せん断速度 50~100s ⁻¹
(種類-置換率)	(%)	フロー (mm)	(Pa)	の塑性粘度(Pa・s)
BF3.7-30	0.49	105	72	232
BF3.7-50	0.48	107	65	186
BF3.7-70	0.53	106	56	150
BF1.7-30	0.40	109	40	147
BF1.7-50	0.39	109	43	128
BF1.7-70	0.40	108	36	117
FA3.2-30	0.50	105	88	249
FA3.2-50	0.48	110	91	259
FA3.2-70	0.58	108	86	219
FA1.7-30	0.64	102	45	169
FA1.7-50	0.82	106	63	209
FA1.7-70	1.04	109	124	293
SF-15	1.27	109	15	119

表-3.5 フロー値とレオメータで測定した試験結果

図-3.3 シングルミクロン高炉スラグ微粉末を用いた水準のせん断速度とせん断応力

また、高炉スラグ微粉末とフライアッシュを比較した場合、高炉スラグ微粉末を用いた 方が、ダイラタンシー性の改善効果が、若干大きいことも分かった。ここで、ダイラタン シー性は、高濃度サスペンションにおける粒子間の摩擦が関係していると考えられている。 とくに、水結合材比の低い領域では、ペースト中の粒子同士の距離が近いため、粒子間の 摩擦力が大きくなっていると推測される。高炉スラグ微粉末の方が、フライアッシュと比 較し、粒子の凹凸は多く、円形度は低いと考えており、ダイラタンシー性は大きくなると 推測していたが、本章の実験では、フライアッシュの方が、ダイラタンシー性は大きくな った。これは,粉体としての粒度分布や円形度,濡れ性,および分散性などが複合的に影響していると考えられる。そのため,**第4章**において,このダイラタンシー性の発生要因 についてメカニズムの解明を行う。

図-3.4 シングルミクロンフライアッシュを用いた水準のせん断速度とせん断応力

3.6.3 圧縮強度

圧縮強度の試験結果とシリカフュームと比較した場合の強度比を表-3.6 に、シリカフュ ームと比較した場合の強度比を図-3.5 に示す。

表-3.6 および図-3.5 より,高炉スラグ微粉末およびフライアッシュの粒径が小さくなる ほど,圧縮強度は大きくなった。高炉スラグ微粉末は、BF3.7 および BF1.7 のすべての水 準において,材齢3日以降は,SF-15と同様以上の強度発現性を有することが分かった。と くに,BF1.7-30の水準は,材齢1日ではSF-15とほぼ同等以上,材齢3,7日では強度比 で140%程度まで向上し,材齢28,91日では強度比で110%程度となり,強度発現性を大 幅に向上できることが分かった。フライアッシュは、すべての水準においてSF-15より強 度は小さくなり,D₅₀=1.5±0.5µm まで粒径を小さくしても強度発現性はそれほど改善でき ないことが分かった。しかし,材齢91日では、FA1.7-30は、SF-15の強度比で97%とな り、長期材齢においては、シリカフュームと同程度の強度発現性を有すると推察された。

ここで、同じ高炉スラグ微粉末置換率では BF3.7 と比べて BF1.7 の方が強度発現性に優れた。これは、BF1.7 の方が BF3.7 より粒径が小さいため、スラグの反応率が向上したことと、および微粉末効果によりモルタル中の微細な空隙が充填され、セメント鉱物中のカルシウムシリケートの水和を促進させた複合効果であると考えられる。

以上のことより,高炉スラグ微粉末は,BF3.7 あるいはBF1.7 を 30~50%程度をセメントに対して内割置換した場合,強度改善効果は大きいことが分かった。とくに,BF1.7 を 30%置換した場合の材齢初期の1日から7日に関しての強度発現性の改善効果が大きい。BF1.7 を 30%以下の割合で混和することで,早期脱型の可能性が考えられるため,補修モ

ルタル材料の生産性向上に関して,BF1.7 は,有用な混和材であると考えられる。一方で, シリカフュームと同様のポゾラン反応を有するフライアッシュは,材齢初期において,シ リカフュームと同等の強度発現性は確認できなかったため,更なる小径化が必要である。

水準 No.		圧縮強	〕度(N/	mm ²)		シリカフュームとの強度比(%)				
(種類-置換率)	1日	3日	7日	28 日	91日	1日	3日	7日	28 日	91日
BF3.7-30	33.7	74.5	109	129	146	102	116	125	105	117
BF3.7-50	21.9	71.5	108	139	148	66	111	124	113	119
BF3.7-70	18.2	68.4	95.7	128	142	55	107	110	104	113
BF1.7-30	34.5	91.0	114	129	139	104	142	131	105	111
BF1.7-50	27.1	92.4	120	143	145	82	144	138	117	116
BF1.7-70	21.8	78.9	102	130	138	66	123	117	106	111
FA3.2-30	20.9	51.9	72.0	105	120	63	81	83	85	96
FA3.2-50	12.1	31.3	47.8	72.8	88.1	36	49	55	59	70
FA3.2-70	4.8	13.9	23.2	41.4	52.7	14	22	27	34	42
FA1.7-30	21.6	54.0	72.6	108	121	65	84	83	88	97
FA1.7-50	11.7	33.8	50.2	81.8	90.3	35	53	58	67	72
FA1.7-70	5.9	14.7	23.6	42.5	59.6	18	23	27	35	48
SF-15	33.2	64.2	87.1	123	125	100	100	100	100	100

表-3.6 圧縮強度の試験結果とシリカフュームと比較した場合の強度比

図-3.5 シリカフュームと比較した場合の強度比

3. 6. 4 乾燥収縮

シングルミクロン高炉スラグ微粉末を用いた場合の乾燥収縮を図-3.6 に、シングルミク ロンフライアッシュを用いた場合の乾燥収縮を図-3.7 に、シングルミクロン高炉スラグ微 粉末を用いた場合の質量変化率を図-3.8 に、シングルミクロンフライアッシュを用いた場 合の質量変化率を図-3.9 に示す。

図-3.6 より,高炉スラグ微粉末を用いた場合,BF1.7,BF3.7 の順で乾燥収縮は低減した。 また,その置換率が小さいほど,乾燥収縮は低減した。粒径の小さい高炉スラグ微粉末を 用いるほど,乾燥収縮は大きくなると考えていたが,その逆の傾向となった。また,BF3.7 は,その置換率の増加とともに,乾燥収縮は大きくなるのに対し,BF1.7 は,その置換率が 増加しても,ほとんど乾燥収縮は変化しないことが分かった。ここで,図-3.8 に示した質 量変化率より,BF1.7,BF3.7 の質量変化率はほぼ同程度にあるのに対し,乾燥収縮は,BF1.7 を用いた水準の方が小さい。つまり,BF1.7 の水準の方が,BF3.7 と比べて,同じ収縮量の 割に,質量変化が大きい,すなわち,水分の蒸発が大きいことが分かった。BF1.7 の乾燥収 縮が粒径の割に低減できるメカニズムの解明ができれば,今後のシングルミクロン領域の 高炉スラグ微粉末の使用に役立つと考えられる。このメカニズムの解明は,第5章で検討 を行う。また,BF1.7 を用いた場合,SF-15 よりも乾燥収縮は低減できることが分かった。 そのため,乾燥収縮ひび割れは,シリカフュームを用いた場合と比べて低減でき、耐久性 は向上できると考えられる。

図-3.7 より,フライアッシュを用いた場合,FA3.2,BF1.7 の順で乾燥収縮は低減する傾向であった。また,高炉スラグ微粉末と異なり,置換率が大きいほど,乾燥収縮は低減した。とくに,フライアッシュ置換率が70%では、シリカフュームを用いた場合の半分以下の乾燥収縮となり,大幅に乾燥収縮は低減できるが,一方で,圧縮強度の発現性が低い課題がある。フライアッシュを用いた場合,乾燥収縮ひび割れは、シリカフュームを用いた場合と比べて大幅に低減でき,耐久性は向上できると考えられる。しかしながら,強度発現性に課題があるため,長期材齢での強度発現性がシリカフュームと同程度となるFA1.7-30の水準が、シリカフュームと同様に活用できる可能性が高いと考えられる。

以上のことより,高炉スラグ微粉末は BF1.7 を用いた場合,フライアッシュは全ての水 準で,シリカフュームを用いた場合より,乾燥収縮は改善できることが分かった。これは, 補修モルタル材料や高強度コンクリートの耐久性の観点からは,有用な混和材であると考 えられる。

36

図-3.6 シングルミクロン高炉スラグ微粉末を用いた場合の乾燥収縮

図-3.8 シングルミクロン高炉スラグ微粉末を用いた場合の質量変化率

図-3.9 シングルミクロンフライアッシュを用いた場合の質量変化率

3. 6. 5 自己収縮

シングルミクロン高炉スラグ微粉末を用いた場合の自己収縮を図-3.10 に、シングルミク ロンフライアッシュを用いた場合の自己収縮を図-3.11 に示す。

図-3.10より,高炉スラグ微粉末を用いた場合,BF1.7およびBF3.7の水準はほぼ同等の 自己収縮となることが分かった。また,置換率が大きくなるほど,自己収縮は大きくなっ た。SF-15と比べると,BF-1.7およびBF-3.7の置換率が30%の場合,自己収縮は半分程度 の値であり、シリカフュームを用いる場合より、自己収縮は低減できることが分かった。 フライアッシュを用いた場合、FA3.2、FA1.7、の順で自己収縮は小さくなった。また、 すべての水準で SF-15 より自己収縮は小さくなり、シリカフュームを用いる場合より、自 己収縮は低減できることが分かった。

図-3.10 シングルミクロン高炉スラグ微粉末を用いた場合の自己収縮

図-3.11 シングルミクロンフライアッシュを用いた場合の自己収縮

以上のことより,高炉スラグ微粉末はBF1.7を30%置換した場合,フライアッシュは全ての水準で,シリカフュームを用いた場合より,自己収縮は改善できることが分かった。 これは,補修モルタル材料や高強度コンクリートの耐久性の観点からは,有用な混和材で あると考えられる。

3. 6. 6 促進中性化

各水準の中性化深さを表-3.7 に示す。

表-3.7 より,高炉スラグ微粉末を用いた場合は,すべての水準において,26 週までの中 性化深さは 0mm となり,フライアッシュを用いた場合は,置換率 30%の水準において, 26 週までの中性化深さは 0mm となった。同じ置換率で比較した場合,FA1.7 の方が,FA3.2 より中性化深さは若干小さくなることが分かった。しかしながら,SF-15 と比べると,中性 化深さが大きいため,SF-15 と同程度の耐久性を考えると,フライアッシュの場合,30%の 置換率が上限であると考えられる。

以上のことより, BF1.7 および BF3.7 は全ての水準, FA1.7 および FA3.2 は 30%の置換 率を上限とすれば、シリカフュームを用いた場合と同等の耐久性が得られると考えられる。

水準 No.	中性化深さ (mm)								
(種類-置換率)	1週	4週	8週	13 週	26 週				
BF3.7-30	0.0	0.0	0.0	0.0	0.0				
BF3.7-50	0.0	0.0	0.0	0.0	0.0				
BF3.7-70	0.0	0.0	0.0	0.0	0.0				
BF1.7-30	0.0	0.0	0.0	0.0	0.0				
BF1.7-50	0.0	0.0	0.0	0.0	0.0				
BF1.7-70	0.0	0.0	0.0	0.0	0.0				
FA3.2-30	0.0	0.0	0.0	0.0	0.0				
FA3.2-50	1.9	3.7	4.1	4.9	6.9				
FA3.2-70	6.8	15.4	20.0	20.0	20.0				
FA1.7-30	0.0	0.0	0.0	0.0	0.0				
FA1.7-50	1.4	2.2	3.1	4.5	5.5				
FA1.7-70	5.9	14.2	20.0	20.0	20.0				
SF-15	0.0	0.0	0.0	0.0	0.0				

表-3.7 各水準の中性化深さ

3.6.7 遮塩性

各水準の10%塩化ナトリウム水溶液に365日浸せきした塩化物イオン濃度を表-3.8 に示す。

表-3.8 より,高炉スラグ微粉末を用いた場合は、すべての水準において,塩化物イオン の浸透は 0~1cm のみで,1cm 以上の深さへの浸透はほとんどないことが分かった。また、 置換率が大きくなるほど、0~1cm の塩化物イオン濃度が小さくなるため、遮塩性は、置換 率が大きくなるほど、向上することが分かった。粒径の違いでは、BF1.7 の方が、BF3.7 よ り 0~1cm の塩化物イオン濃度が小さいため、粒径が小さい方が、遮塩性は向上できること も分かった。フライアッシュを用いた場合は、置換率が大きくなるほど、1~2cm、および 2~3cm の塩化物イン濃度が大きくなったため、遮塩性は低下してしまうことが分かった。 粒径の違いでは、FA1.7 の方が、FA3.2 より全体的な塩化物イオン濃度の浸透が小さいため、 粒径が小さい方が、遮塩性は向上できる傾向にあることが分かった。しかしながら、SF-15 と比べると、置換率 50、および 70%の塩化物イオン濃度の浸透が大きいため、SF-15 と同 程度の耐久性を考えると、フライアッシュの場合、30%の置換率が上限であると考えられ る。

以上のことより, BF1.7 および BF3.7 は全ての水準, FA1.7 および FA3.2 は 30%の置換 率を上限とすれば,シリカフュームを用いた場合と同等の耐久性が得られると考えられる。

水準 No.	塩化物イオン濃度(kg/m ³)							
(種類-置換率)	ブランク	0~1cm	1~2cm	2~3cm	3~4cm	4~5cm		
BF3.7-30	0.14	20.77	0.28	0.15	0.14	0.14		
BF3.7-50	0.14	16.26	0.16	0.13	0.14	0.14		
BF3.7-70	0.12	11.85	0.13	0.12	0.12	0.12		
BF1.7-30	0.14	19.32	0.17	0.14	0.14	0.14		
BF1.7-50	0.14	15.22	0.13	0.12	0.14	0.14		
BF1.7-70	0.12	11.72	0.12	0.11	0.12	0.12		
FA3.2-30	0.14	27.71	0.38	0.18	0.21	0.14		
FA3.2-50	0.11	18.38	2.37	0.29	0.15	0.11		
FA3.2-70	0.11	15.74	4.42	1.72	0.58	0.16		
FA1.7-30	0.14	22.54	0.27	0.16	0.15	0.14		
FA1.7-50	0.11	16.30	2.07	0.17	0.13	0.11		
FA1.7-70	0.11	18.17	2.05	0.93	0.58	0.39		
SF-15	0.21	17.36	0.26	0.28	0.23	0.21		

表-3.8 各水準の塩化物イオン濃度(10%塩化ナトリウム水溶液に365日浸せき)

3.7 まとめ

本章では、シングルミクロン領域の高炉スラグ微粉末およびフラアッシュの基本特性を 把握することを目的として、 $D_{50}=3.5\pm0.5\mu m$ 、および $D_{50}=1.5\pm0.5\mu m$ の粒径の混和材を 試製し、その置換率を変化させて実験を行った結果、以下の知見を得た。

- (1) フレッシュ性状として、SP 添加率を比較した場合、シングルミクロンの高炉スラグ 微粉末およびフライアッシュを用いた場合、シリカフュームと比較すると、半分程 度の SP 添加量で同一フロー値が得られるため、混和剤使用量を低減できる。
- (2) 粘性(ダイラタンシー性)は、高炉スラグ微粉末およびフライアッシュを用いた場合、シリカフュームと比較すると、粘性が大きくなり、シリカフュームと同様の作業性は得られないが、粒径が 1.7µm 程度で、その置換率が 30%とした場合、ダイラタンシー性の改善効果が大きい。
- (3) 圧縮強度は、BF3.7 あるいは BF1.7 を 30~50%程度をセメントに対して内割置換した場合、強度改善効果は大きい。とくに、BF1.7 を 30%置換した場合の材齢初期の1日から7日に関しての強度発現性の改善効果が大きい。BF1.7 を補修モルタル材の混和材として用いた場合、更なる脱型の早期化の可能性が考えられるため、補修モルタル材料の生産性向上に関して、BF1.7 は、有用な混和材である。一方で、シリカフュームと同様のポゾラン反応を有するフライアッシュは、材齢初期において、シリカフュームと同等の強度発現性は確認できなかったが、長期材齢では、シリカフュームと同程度の強度発現性が得られる。そのため、更なる小径化が必要である。
- (4) 乾燥収縮は、BF1.7 を用いた水準とフライアッシュは全ての水準で、シリカフュームを用いた場合より、乾燥収縮は改善できる。これは、補修モルタル材料や高強度コンクリートの耐久性の観点からは、有用な混和材である。
- (5) 自己収縮は、BF1.7 を 30%置換した場合とフライアッシュは全ての水準で、シリカ フュームを用いた場合より、自己収縮は改善できる。これは、乾燥収縮同様に、補 修モルタル材料や高強度コンクリートの耐久性の観点からは、有用な混和材である。
- (6) 促進中性化の観点からの耐久性は、BF1.7 および BF3.7 は全ての水準、FA1.7 および FA3.2 は 30%の置換率を上限とすれば、シリカフュームを用いた場合と同等の耐久性が得られる。
- (7) 遮塩性は, BF1.7 および BF3.7 は全ての水準, FA1.7 および FA3.2 は 30%の置換率 を上限とすれば、シリカフュームを用いた場合と同等の耐久性が得られる。

以上の各種性状の実験結果を総合的に評価した結果を表-3.9 に示す。SF-15 と比較して, 各種性能が 120%以上を◎(2 点),80~120%を○(1 点),50~80%を△(0 点),50%以 下を×(-1 点)として評価を行い,その点数が大きい方が,総合的に混和材料の性能が優 れると評価を行った。 その結果,高炉スラグ微粉末およびフライアッシュともに,粒径が小さいほど,かつ置 換率が小さいほど,総合評価は良好となることが分かった。SF-15と同等以上の性能が優れ ていた水準は,BF1.7-30>BF1.7-50>BF1.7-70=FA1.7-30=BF3.7-50=BF3.7-70の順で あった。とくに,BF1.7は,初期強度および収縮特性に関して性能が向上し,補修関連のモ ルタル材料の性能の向上,あるいは高強度混和材としての適用の可能性が考えられた。フ ライアッシュに関しては,収縮特性に関して性能の向上が考えられたため,高強度コンク リート分野での混和材としての適用の可能性が考えられたが,ダイラタンシー性状や圧縮 強度の向上の観点からは,更なる小径化が必要である。

よって,高炉スラグ微粉末およびフライアッシュの粒径は,D₅₀=1.5μm 程度の粒径,置 換率は 30%以下で使用することを推奨とする。

水準 No.	SP	来上外上	強度夠	卷現性	乾燥	自己	促進	油柏树	総合評価
(種類-置換率)	添加量	怕任	初期	長期	収縮	収縮	中性化	遮塭注	(点)
BF3.7-30	0	×	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigtriangleup	7
BF3.7-50	O	×	0	0	0	O	0	0	8
BF3.7-70	0	\bigtriangleup	0	0	0	0	0	0	8
BF1.7-30	\bigcirc	\bigtriangleup	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	10
BF1.7-50	0	\bigtriangleup	0	0	0	O	0	0	9
BF1.7-70	O	\bigtriangleup	0	\bigcirc	\bigcirc	\bigcirc	0	0	8
FA3.2-30	\bigcirc	×	\bigtriangleup	\bigcirc	\bigcirc	\bigcirc	0	×	6
FA3.2-50	O	×	×	\bigtriangleup	O	O	×	×	2
FA3.2-70	0	×	×	×	O	O	×	×	1
FA1.7-30	\bigcirc	\bigtriangleup	\bigtriangleup	\bigcirc	\bigcirc	\bigcirc	0	\bigtriangleup	8
FA1.7-50	O	×	×	\bigtriangleup	O	O	×	×	2
FA1.7-70	0	×	×	×	\bigcirc	\bigcirc	×	×	1
SF-15	0	0	\bigcirc	0	0	\bigcirc	0	0	8

表-3.9 本章の実験で用いた水準の各種性状の総合評価

※ 粘性は、レオメータで測定した最大応力と塑性粘度から評価

※ 初期強度は材齢1,および3日,長期強度は材齢91日から評価

参考文献

- 1) 三輪茂雄:粉粒体工学, 朝倉書店, pp.140-145, 1972
- 2) 河野克哉ほか:通常流込み成形で 460N/mm²の圧縮強度を発現する新規セメント硬化
 体,第24回シンポジウム論文集,pp.545-550,2015.10
- 3) 細貝朱里ほか:高炉スラグ微粉末を多量に含むモルタルのダイラタンシー性状および改善方法に関する検討,コンクリート工学年次論文集, Vol.41, No.1, pp.1055-1060, 2019

第4章

低水結合材比におけるダイラタンシー特性

4.	1	概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・45
4.	2	低水結合材比におけるダイラタンシー性状の発生因子の解明・・・・・・47
4.	3	ダイラタンシー性状の簡易的評価手法の妥当性の検証・・・・・・・・・74
4.	4	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・81

4.1 概論

構造物の耐久性の向上など高機能化をするために、コンクリートの水結合材比の低減(粉体量の増加),鉄筋の配筋の増加などを実施しており、フレッシュコンクリートのポンプ施工や型枠への充填が困難な場合が生じている。このような状況の中で、高機能なコンクリートを効率よく施工するために、フレッシュコンクリートのワーカビリティーおよびコンシステンシーの正確な評価とその改善が急務となっている。

これまでのコンクリート工事は、施工条件に適したフレッシュコンクリートの流動性の 決定や作業時間による経過時間の考慮、振動締固めの方法など、長年の経験に基づいて決 定された「経験則」で行われてきた。しかしながら、このような経験則は、個々の職人の 定性的な感覚に依存する部分がほとんどで、その精度には個人差がある。そのため、再現 性や製品の品質の安定性に関しては正確な評価は不可能である。また、水結合材比の低減 を実施するために、化学混和剤としてポリカルボン酸系の高性能減水剤が開発され、コン クリートにおける粉体の高い分散効果と減水率を実現し、低水結合材比で、かつ高粉体化 を実現している。このような技術の進歩により、経験則が及ばない場合には、体系化や定 量化がされていない経験則では応用が難しく、実施工時に困難を伴うことも予測されてい る。

一般に、低水結合材比のフレッシュコンクリートは、粘性が大きい、ワーカビリティー が悪い、スコップが入りにくいなどと認識されている。例えば、化学混和剤の添加により、 流動性は向上するが、目視や V 漏斗などの流動性評価手法では軟らかいと感じられた試料 でも、実際に練り返しなどを行うと、変形の与え方によっては、瞬間的に固体化し、閉塞 や充填不良などの問題が発生する場合がある。これは、高濃度サスペンションであるフレ ッシュコンクリートのせん断抵抗の大小により発生しており、その大部分が固体粒子間の 接触や摩擦に起因したものと考えられる。その挙動は、レオロジー的には、せん断ひずみ 速度の変化に伴うせん断応力の一時的な増加であるダイラタンシー性状に起因するもので ある。ダイラタンシー性状の緩和手法としては、シリカフュームなどの超微粉末の混和な どによる充填性の向上が有効であると報告¹⁾されているが、多くは、経験則によるもので ある。シリカフューム自体もサブミクロン領域の超微粉末であるが、粉体では凝集して存 在し、かさ容積も小さいため、ハンドリングが困難になる場合が多い。また、実際のペー スト中でサブミクロンの粒子がその粉体粒径まで分散しているか不明点が多い。

第3章において、D₅₀=3.5±0.5µm、およびD₅₀=1.5±0.5µmの2種類のシングルミクロン領域の粒径を有する混和材料を試作し、フレッシュ性状および硬化性状の各種基本特性の把握を実施した。その結果、D₅₀=1.5±0.5µmのシングルミクロン高炉スラグ微粉末、またはフライアッシュを、セメントに対して 30%置換した場合、ダイラタンシー性状を改善できる可能性を把握した。ダイラタンシー性状を改善し、シリカフュームを混和した場合に得られるようなチクソトロピー性状(ここでのチクソトロピー性とは、レオロジー的には擬塑性流体であり、せん断速度の増加とともにみかけの粘度が低下する流体を表す)を

付与できれば,アプリケーションとして,表-4.1 に示すようなメリットの可能性が考えられる。

材料の種類	メリット
エルタル林	・コテ塗り時は圧力による作業性の向上
モルタル内	・作業終了時は圧力開放による厚塗り性の向上
ガラウト材	・ポンプ圧送時は見かけのせん断応力低減による圧送性の改善
クノワト4約	・注入先端部は圧力開放による先流れ抵抗性の向上
吉 治府コンクリート	・低水系合材比での練り混ぜの改善
同独臣コンクリート	・ポンプ圧送性やワーカビリティーの向上

表-4.1 各材料のチクソトロピー性付与のメリット

ここで、ダイラタンシー性状は、高濃度サスペンションにおける粒子間の接触や摩擦が 関係していると考えられている。とくに、水結合材比の低い領域では、ペースト中の粒子 同士の距離が近いため、粒子間の摩擦力が大きくなっていると推測される。シングルミク ロン高炉スラグ微粉末およびフライアッシュが、シリカフュームと同様にダイラタンシー 性状を緩和する混和材料として活用できれば、シングルミクロン混和材料の用途拡大に繋 がると考えられる。また、ダイラタンシー性状の発生要因として、粉体としての粒度分布 や円形度、濡れ性、および溶液中における分散性、水結合材比などが複合的に影響してい ると予測され、これら要因の特定を行うことができれば、適切な割合でシングルミクロン 混和材料を使用することができると考えられる。

どのような粒径あるいは粒度分布のシングルミクロン領域の混和材料をどの割合で混和 すれば、ダイラタンシー性状を緩和し、チクソトロピー性を付与できるのか知見が得られ ていない。また、回転粘度計を用いて、実際のレオロジーの定量評価は可能であるが、現 場レベルでの簡易的な評価方法ではない。新しい混和材料として、シングルミクロン領域 の混和材料を今後活用していく上では、経験則でなく、精度の高い簡易的な評価手法を考 案する必要がある。

よって、本章では、低水結合材比領域でのダイラタンシー性状の発生因子について解明 を行うとともに、ダイラタンシー性状を緩和するシングルミクロン混和材料の最適と考え られる条件の確認を行った。また、回転粘度計から得られたレオロジー特性とダイラタン シー性状の数種類の簡易的な評価方法の妥当性の検証を行った。ダイラタンシー性状の発 生因子の解明を4.2に、ダイラタンシー性状の簡易的評価手法の妥当性の検証を4.3 に、本章のまとめを4.4に記述した。

4.2 低水結合材比におけるダイラタンシー性状の発生因子の解明

4.2.1 使用材料

本節で使用した材料を表-4.2 に、各混和材料の粒度分布を図-4.1 に示す。粒度分布は、 レーザー回折式粒度分布測定器(Microtrac MT3300EXII)によって測定を行った。

夕む	****1		=1.□.	密度	D_{50}
石柳	17] 本十			(g/cm_3)	(μm)
練混ぜ水	水道水		W	1.00	-
セメント	普通ポルトランドセメント		Ν	3.16	17.6
		В	BF3.8	2.01	3.77
	シングルミクロン		BF1.7		1.73
	高炉スラグ微粉末		BF1.0	2.91	0.99
混和材			BF0.5		0.53
	シングルミクロンフライアッシュ		FA3.9	2.58	3.91
	シングルミクロン炭酸カルシウム		LS3.9	2.71	3.85
	シリカフューム		SF0.4	2.25	0.39
	高性能減水剤		SP	ポリカルボン酸	密エーテル系
混和剤	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		DE	ポリアルキレン	グリコール
	伯代月		DI	誘導	体

表-4.2 使用材料

図-4.1 混和材料の粒度分布

本節では、ダイラタンシー性状の発生因子を解明する目的で、表-4.2、および図-4.1 に示す7種類の無機系のシングルミクロン領域の粒径を有する混和材料を使用した。

BF3.8 は竪型ミルにより D₅₀=15µm 程度まで粉砕後,気流式の分級機により製造し, BF1.7, BF1.0,および BF0.5 は,D₅₀=3.5µm 程度まで粉砕後,気流式の分級機により製造 した。FA3.9 はフライアッシュ II 種を粉砕によって製造し,LS3.9 は D₅₀=15µm 程度の工業 用の炭酸カルシウムを粉砕によって製造した。

4. 2. 2 実験水準と練り混ぜ方法

本節では,表-4.3 に示す 21 水準の実験を実施した。

実験ケース 1 では, 混和材料の粒度分布, および粒径の違いによる評価を目的に, 高炉 スラグ微粉末の粉末度を変化させた 4 水準について比較した。

実験ケース 2 では、同一粒径または粒度分布における無機系粉体の違い(粉体としの粒 子形状や濡れ性の違い)による評価を目的に、コンクリートにおいて増量材などとして汎 用的に用いられている高炉スラグ微粉末、フライアッシュ、炭酸カルシウムの 3 種類につ いて比較した。なお、**第3章**において、ダイラタンシー性状が顕著に確認された $D_{50}=3.5$ ±0.5µm を粒径の目標とした。

実験ケース 3 では、円形度の違いによる評価を目的に、高炉スラグ微粉末をシリカフュ ームと同程度の D₅₀まで粉砕し、シリカフュームと比較を行った。

また,粉体におけるダイラタンシー性状の発生状況を把握したいため,骨材要因を除外 したセメントペーストで実験を行った。

ここで、ダイラタンシー性状の発生に与える因子として**表-4.4** に示す因子が考えられ、 これらのどの因子がダイラタンシー性状に影響を与えているのか解明を行った。

訂号	セ	メント置	換率(%))	実験目的			
記与	10	20	30	50	ケース1	ケース2	ケース3	
BF3.8	0	-	0	0	0	0		
BF1.7	\bigcirc	-	0	0	0			
BF1.0	\bigcirc	-	0	0	0			
BF0.5	\bigcirc	-	0	0	0		0	
FA3.9	\bigcirc	-	0	0		0		
LS3.9	0	-	0	0		0		
SF0.4	0	0	0	-			0	

表-4.3 実験水準および実験目的のケース

水結合材比は、18.0%とした。この水結合材比は、コンクリートにおいて、圧縮強度で 100N/mm²以上の高強度コンクリートの領域である。

結合材であるセメントと混和材料は、別々に計量して、練り混ぜ時に混合した。練り混 ぜは、「空練 30 秒 \rightarrow 注水 \rightarrow ペーストー体化時間+3 分練混ぜ \rightarrow 3 分静置 \rightarrow 30 秒練混 ぜ」とした。ミキサは、10L 容積のモルタルミキサを用い、練り混ぜ容量 2L とし、回転数 216rpm (中速) にて行った。ここで、「ペーストー体化時間」とは、**写真-4.1** に示すように、 練り混ぜ開始から目視により水と結合材が一体化し、その後一体化の状態がほとんど変化 しないと判断される時間である。

因子	内容	
粉体の円形度	・粉体の形状測定により評価	
粉体の濡れ性	・粉体の濡れ性により評価	
粉体の粒度分布	・混和材の置換率の違いにより評価	
溶液中の粉体濃度	・すべての水準で水結合材比を固定しているため,水溶液中の粉体の	
(粒子間距離)※	重量濃度は一定	
水溶液中における 粉体の分散性 [※]	・水結合材比 18%の高濃度領域でのゼータ電位の測定は不可	
	・フロー値を混和剤により一定としているため、粉体の分散性は同等	
	であると仮定	

表-4.4 ダイラタンシー性状の発生に与える因子と本節の評価方法

※の因子は、内容の理由から本節のダイラタンシー性の大小の程度は一定と仮定する。

写真-4.1 ペースト一体化時間のイメージ

4.2.3 実験項目と評価方法

(1) セメントペーストのフレッシュ性状

0打フローと空気量は、「**第3章 3.5.1 フレッシュ性状**」と同様に、JASS 5M-701 に準拠して測定を行った。0打フローは 270±20mm となるようにポリカルボン酸エーテル 系の SP 添加量によって調整し、SP の固形分 30%は、単位水量に加えて補正した。空気量 は 3.0%以下を目標とした。

0 打フローの測定時に,フローコーンを上に持ち上げてからペーストの広がりが概ね 200mm に達するまでの時間も同時に測定を行い,200mm 通過時間とした。

(2) 混和材料の形状分析

混和材料の形状(粒子の丸さなど)に起因して,ダイラタンシー性の発生因子となって いるのか確認する目的で,無機系混和材の形状分析を実施した。注入型画像解析粒度分布 計(IF-3200)[レンズ倍率:9倍,画素分解能:0.185µm/pixel,スペーサー厚:50µm]を 用い,高解像度な粒子投影画像を撮影し,粉体粒子の大きさや形状を連続的に測定し,検 出粒子数が2万個以上となるように各サンプルの繰り返し測定²⁾を行った。なお,機器の 粒子径の測定範囲として,200nm~1mm まで測定可能であったが,BF0.5,および SF0.4 は,画像の解像度が悪く,正確な粒子形状の把握が難しいと判断されたため,注入型画像 解析による測定を実施せず,走査型電子顕微鏡2次電子像(SEM 画像)のみで粒子の形状 を判断した。

以下に、注入型画像解析粒度分布計の試験手順を示す。

- ① 試料 0.37g~0.40g を分散媒 25 ccに投入し,超音波による前処理後,視野内で粒子が込み過ぎないように分差媒で希釈する。超音波による前処理は,超音波ホモジナイザーにより,150W,3分(イソプロパノール分散時は2分)とした。測定時の前処理条件を表-4.5 に示す。
- 合計の検出粒子数が2万個以上となるように繰り返し測定を,異なる試料において 3回行い,得られた結果を合算し,平均したデータを用いる。
- ③ 解析精度の向上のため、図-4.2 に示すようなイメージで、偶然隣合った粒子が連なって検出されたものを解析から除く目的で、フィルター解析(ISO Solidity:ピクセル面積と凸包の面積の比「粒子の尖りぐあい」が 90%未満を解析から除去)を適用する。
- ④ 表-4.6 に示す形状パラメータについて解析を行う。

記号	分散媒	希釈倍率 (倍)
BF3.8	0.2%ヘキサメタリン酸ナトリウム水溶液	15
BF1.7	0.2%ヘキサメタリン酸ナトリウム水溶液	50
BF1.0	0.2%ヘキサメタリン酸ナトリウム水溶液	100
BF0.5	0.2%ヘキサメタリン酸ナトリウム水溶液	100
FA3.9	0.2%ヘキサメタリン酸ナトリウム水溶液	30
LS3.9	イソプロパノール溶液	30
SF0.4	0.2%ヘキサメタリン酸ナトリウム水溶液	10
Ν	イソプロパノール溶液	5

表-4.5 測定時の前処理条件

図-4.2 粒子の重なりによるフィルター解析で除去される粒子のイメージ

形状パラメータ	詳細	イメージ図
ISO 円形度 「粒子の丸さ」	ISO 円面積相当径と周囲長円相当径の比 ここに, R (円形度) =4πS/L ² S:面積 L:輪郭線の長さ (正八角形 0.974, 正六角形 0.952, 正五角形 0.93)	
ISO コンパクトネス 「粒子の丸さ」	ISO 円面積相当径と ISO 最大長の比	
コンベクシティ 「粒子のでこぼこさ」	粒子画像の突起を結ぶ輪郭(凸包)の周囲長と 粒子周囲長の比	

表-4.6 解析を行う形状パラメータの概要

(3) 混和材料の濡れ性

混和材料の濡れ性に起因して、ダイラタンシー性の発生因子となっているのか確認する 目的で,無機系混和材の濡れ性を把握した。**写真-4.2**に示すはんだ濡れ性試験機(5200 TN) を用い、粉体の濡れ性を測定した。試験は、浸透重量法³⁾により測定した。

以下に、はんだ濡れ性試験機による濡れ性の試験手順を示す。

- 試料 1.00g を**写真-4.3** に示す
 ϕ 10mm のガラス製の円筒容器の底面に 20 ミクロン のナイロンメッシュを設置し、試料を充填する。
- ② 円筒容器に試料を充填後,300回タッピングを行う。
- ③ 浸透用の溶液は、純水を使用する。
- ④ 写真-4.3 に示すように、円筒容器を測定器にセットし、写真-4.4 に示すように試料 に水が浸透し、試料の上部まで浸透が完了するまでの濡れ時間と最大濡れ力 Fを測 定する。3回の測定の平均値のデータを用いる。以下の 4.1 式により、最大濡れ力 Fを算出した。

 $F = \{ \gamma_L \times \cos \theta \times L - v \times \rho \times g \} \times 10^2$ [4.1]
ここに, F :最大濡れ力 (mN) θ :接触角 (°) L :接触長 (cm) γ_L :液体の表面張力 (dyne/cm) v :浸せき部分の体積 (cm³)

ρ :液体密度 (g/cm³)

g :重力加速度 (cm/s²)

を意味する。

写真-4.2 はんだ濡れ性試験機

写真-4.3 ガラス製の円筒容器および円筒容器の設置状況

(4) 混和材料の粒度分布

レーザー回折式粒度分布測定器(Microtrac MT3300EXII)によって測定した結合材であ るセメントと各混和材料の粒度分布から,表-4.3 に示した水準で粉体を構成した場合の粒 度分布を計算した。計算の際,測定した粒度分布は体積基準であるため,質量割合の置換 率から体積割合への置換率となるように各混和材の密度により補正を実施した。

計算された粒度分布と,最密充填状態をとるための粒度分布曲線である Fuller-Thompson の理想粒度曲線⁴⁾などとの比較を行い,ダイラタンシー性に影響を与える要因について考 察を実施した。

(5) レオロジー特性

レオロジー特性の評価は,「**3章の3.5.2 粘性(ダイラタンシー性)**」と同様に回転粘度計の一種であるレオメータにて測定を行った。

レオメータの測定から得られた結果のダイラタンシー性状としての定量値は、塑性粘度 (値が大きくなるほど、ダイランタンシー性は大きくなる)と、作業時の力の負荷を表す と考えられる最大応力(値が大きくなるほど、作業時の力の負荷が大きくなる)を用いる こととした。

塑性粘度は、図-4.3 に示すように、せん断速度が 100s⁻¹ まで測定ができた水準は、せん 断速度が 50~100s⁻¹の傾き(塑性粘度)とし、レオメータのトルクの上限により測定がで きなった水準は、測定された傾きの最大値とした。最大応力は、測定時の最大応力とした。

図-4.3 レオメータから得られる塑性粘度(ダイラタンシー性状の定量値の考え方)

(6) 貫入抵抗によるダイラタンシー性状の評価(貫入抵抗値試験)

貫入抵抗値試験は、細貝らの研究⁵⁾を参考とし、JISA 1147「コンクリートの凝結時間試験方法」に用いられるプロクター貫入試験装置により評価を行った。

以下に、貫入抵抗値試験によるダイラタンシー性の評価の試験手順を示す。

- ① 試料を練り混ぜ後、 φ100mm 以上の金属製の型枠に試料を充填させ、試料の上面 を十分に均す。
- ② 断面積 100mm²の貫入針を約 0.2 秒の間に 25mm 貫入させる。この時に得られる抵抗値の大小により、ダイラタンシー性状の定量評価を行う。

(7) 引張抵抗によるダイラタンシー性状の評価(引張抵抗値試験)

細貝らの研究 ⁵⁾ は,瞬間的な圧縮力の測定であるが,その逆の引張力による評価として 引張抵抗値試験も同時に実施した。

引張抵抗値試験は,簡易的に圧縮力や引張力の測定に用いられるハンディアナログフォ ースゲージ(AN-200)を使用した。**写真-4.5**に示すように,フォースゲージにフック型冶 具を装着し,ステンレス製の30cm 定規をセットする。試料から定規を引き抜く際の引張抵 抗力の大小により,ダイラタンシー性の定量評価を行った。

以下に、引張抵抗値試験によるダイラタンシー性の評価の試験手順を示す。

- 試料を練り混ぜ後、 φ100mm×高さ 200mm の金属製の型枠に試料を充填させ、試料の上面を十分に均す。
- ② ステンレス製の 30cm 定規を写真-4.5 に示すように 200mm 挿入させ, 30cm 定規 (断面積 10,000mm²)を約 1 秒の間にすべて引き抜く。引き抜く際に, 金属製型 枠が持ち上がらないように固定する。この時に得られる抵抗値の大小により, ダイ ラタンシー性状の定量評価を行う。

写真-4.5 引張抵抗値試験に用いる機器と測定の概要

4.2.4 実験結果および考察

(1) 各混和材の粉体からのダイラタンシー性状の発生因子の考察

各混和材料の粉体特性と各混和材料の置換率別のレオメータ測定結果を表-4.7 に,混和 材置換率 10%におけるケース毎のせん断速度とせん断応力の関係を図-4.4 に,混和材置換 率 30% (SF は 20%) におけるケース毎のせん断速度とせん断応力の関係を図-4.5 に,混 和材置換率 50% (SF は 30%) におけるケース毎のせん断速度とせん断応力の関係を図-4.6 に,各混和材料の走査型電子顕微鏡 2 次電子像 (SEM 画像) を**写真-4.6** に示す。

ここで、濡れ性の濡れ力は試料 1cm³あたりの濡れ力であり、濡れ時間は試料 1g あたり の濡れ時間である。図-4.3 に示したレオメータの測定から得られた塑性粘度は、せん断速 度が 100s⁻¹まで測定ができた水準(例えば、図-4.4 の BF1.7-10 の水準)は、せん断速度が 50~100s⁻¹の傾き(塑性粘度)である。一方、レオメータのトルクの上限により測定ができ なった水準(例えば、図-4.5 の BF3.8-30 の水準)は、測定された傾きの最大値である。

		形状		濡れ	濡れ性		レオメータ					
種類	D ₅₀	円	م. د.	コンパク コンベク トネス シティ	運んも	濡れ	置換率	≤ 10%	置換率	₫ 30%	置換率	≤ 50%
	(μm)	形	147		漏れ) (mN)	時間	塑性粘度	最大応力	塑性粘度	最大応力	塑性粘度	最大応力
		度	<u> 下不入</u>			(秒)	(Pa•s)	(Pa)	(Pa·s)	(Pa)	(Pa·s)	(Pa)
BF3.8	3.77	0.921	0.879	0.965	7.64	82	78	3340	313	3340	2040	3340
BF1.7	1.73	0.925	0.885	0.968	8.69	133	15	1016	2	205	462	3326
BF1.0	0.99	0.922	0.876	0.970	8.96	150	10	826	2	208	490	3262
BF0.5	0.53	-	-	-	4.29	280	9	681	2	230	2	268
FA3.9	3.91	0.924	0.888	0.965	6.31	75	53	3328	135	2906	3095	3340
LS3.9	3.85	0.921	0.877	0.966	7.82	115	55	3331	29	1652	1443	3340
SF0.4	0.39	-	-	-	2.29	242	8	703	6	847	-	-
Ν	17.6	0.920	0.878	0.965	9.37	20	-	-	-	-	-	-

表-4.7 各混和材料の粉体特性と各混和材料の置換率別のレオメータ測定結果

図-4.4 ケース毎のせん断速度とせん断応力の関係(置換率10%)

図-4.5 ケース毎のせん断速度とせん断応力の関係(置換率 30% (SF は 20%))

図-4.6 ケース毎のせん断速度とせん断応力の関係(置換率 50% (SF は 30%))

写真-4.6 各混和材料の走査型電子顕微鏡 2 次電子像(SEM 画像)

各水準の塑性粘度とコンベクシティとの関係を図-4.7 に、各水準の塑性粘度と濡れ力との関係を図-4.8 に、各水準の塑性粘度と濡れ時間との関係を図-4.9 に、D₅₀とコンベクシティ、円形度、および濡れ時間との関係を図-4.10 に示す。

図-4.7 各水準の塑性粘度とコンベクシティ

写真-4.6の SEM 画像から, SF0.4 と FA3.9 を除いた水準は, ほぼ同様な円形度と考えられ, 測定した円形度も同程度であった。FA3.9 は, SEM 画像から球状バルーンが若干確認でき, 若干円形度は大きい値となったが, 高炉スラグ微粉末とほぼ同じ形状であると判断された。SF0.4 は, BF0.5 と比べても, 明らかに球状粒子が多いことが判断でき, BF0.5 と比べて粒子形状が球状に近いと考えられた。

図-4.7 より,粒子の凸凹の程度を表すコンベクシティが大きくなると塑性粘度は低下する 傾向にあることが読み取れた。図-4.8 より,濡れ力と塑性粘度の相関は確認できず,同一 粒径で無機材料の種類および濡れ力が異なる BF3.8, FA3.9,および LS3.9 においても,塑 性粘度と相関は確認されなかった。よって、ダイラタンシー性状に粉体の濡れ性の影響は ほとんどないと考えられる。一方で、図-4.9 より,濡れ時間が長くなるほど,塑性粘度は 小さくなることが読み取れる。これは、図-4.10 より、D₅₀ が小さくなるほど濡れ時間は長 くなっている。つまり、粒径が小さくなり、比表面積が大きくなったことで、濡れ時間も 大きくなり、塑性粘度は粉体の充填性が向上したことで小さくなったと考えられる。コン ベクシティと D₅₀ の関係からも、同様の傾向が図-4.10 から判断できる。コンベクシティは、 粒子が小径となるほど、凸凹の程度が小さくなった、あるいは、画像解析では精度が低下 してしまったために、粒径が小さくなるほどコンベクシティは大きな値として測定された と考えられる。

図-4.9 各水準の塑性粘度と濡れ時間

図-4.10 D₅₀とコンベクシティ、円形度、および濡れ時間との関係

以上のことから、ケース 1 の混和材料の粒度分布および粒径の違いによる評価の水準に おいては、粒径が小さくなるほど、塑性粘度は小さくなることが確認された。

ケース 2 の同一粒径における無機系粉体の違いによる評価の水準においては、濡れ性、 粒子形状の違いによる塑性粘度の差は確認されなかったことから、粒径の違いによる影響 が塑性粘度の大小に影響が大きいと推察できた。

ケース3の円形度の違いによる評価の水準においては、置換率10%では、BF0.5 および SF0.4 ともにほぼ同等の塑性粘度となり、置換率30%では、BF0.5 の方が、SF0.4 より塑性 粘度が小さくなった。そのため、ダイラタンシー性状の発生因子として、1µm より小さい 領域の粒子の円形度の影響の寄与は低いと考えられた。

よって, 混和材料の粉体特性に着目して実験を行った結果, ダイラタンシー性状の発生 因子として, 濡れ性および粒子形状の影響は低いことが分かり, 粒径の影響が一番大きい 可能性であることが分かった。

(2) ダイラタンシー性状の発生に与える粒度分布の影響

各水準の各種実験結果を表-4.8 に, 混和材置換率と塑性粘度との関係を図-4.11 に, 混和 材置換率と最大応力との関係を図-4.12 に示す。

表-4.8 より, SF0.4-30 を除く水準において, SP の調整によりフロー値を目標値である 270±20mm の範囲に調整することができた。SF-0.4-30 の水準は, SP の推奨添加量の上限 である 5.0%添加しても,フロー値は目標範囲に調整することができなかった。そのため, 各種測定は,フロー値 206mm の試料を用いて行った。

水準 (種類- 置換率)	SP/B (%)	フロー (mm)	200mm 通過 (秒)	空 気 量 (%)	ミキサ 最大電流 (A)	最大電流 までの 練混ぜ時間 (秒)	ペース ト一体 化時間 (秒)	貫入 抵抗 (N)	引張 抵抗 (N)	塑性 粘度 (Pa•s)	最大 応力 (Pa)
BF3.8-10	1.40	254	4.1	2.8	2.91	208	330	20	19	78	3340
BF3.8-30	1.05	283	2.1	2.6	3.17	220	360	22	57	313	3340
BF3.8-50	1.00	290	2.6	2.8	3.26	411	600	132	92	2040	3340
BF1.7-10	1.00	257	1.8	2.5	2.93	88	210	0	19	15	1016
BF1.7-30	0.55	260	0.7	2.8	2.84	40	80	0	3	2	205
BF1.7-50	0.70	276	0.7	2.5	2.90	50	140	0	41	462	3326
BF1.0-10	0.90	255	1.5	2.6	2.82	65	120	0	23	10	826
BF1.0-30	0.60	257	1.5	2.8	2.61	70	40	0	10	2	208
BF1.0-50	0.80	255	0.5	3.0	2.71	12	30	0	45	490	3262
BF0.5-10	1.05	277	1.3	2.8	2.83	55	90	0	21	9	681
BF0.5-30	0.80	265	1.2	2.8	2.82	58	25	0	10	2	230
BF0.5-50	1.10	254	1.1	2.5	3.01	45	20	0	4	2	268
FA3.9-10	1.50	256	2.6	2.4	2.91	273	390	27	60	53	3328
FA3.9-30	1.10	267	2.1	2.9	3.06	263	420	27	30	135	2906
FA3.9-50	1.00	268	14.6	2.4	3.29	752	1200	170	122	3095	3340
LS3.9-10	1.30	257	3.0	2.7	2.85	258	330	20	42	55	3331
LS3.9-30	0.85	265	0.8	2.7	2.95	161	240	22	31	29	1652
LS3.9-50	0.70	260	1.4	2.2	3.10	134	210	33	52	1443	3340
SF0.4-10	2.10	274	1.6	2.5	2.80	76	50	0	19	8	703
SF0.4-20	3.10	255	3.1	2.6	2.77	22	30	0	10	5	559
SF0.4-30	5.00	206	15.4	2.6	2.79	35	35	0	10	6	847

表-4.8 各水準の各種実験結果

※SPの固形分 30%は、単位水量に加えて補正

図-4.11 より、ケース1では、BF3.8 の水準は置換率が大きくなるほど塑性粘度は大きく なり、BF1.7 および BF1.0 の水準は、置換率 30%で塑性粘度が最小値となり、置換率 50% ではダイラタンシー性が顕著に確認でき、BF0.5 の水準は、置換率 50%でも塑性粘度の変 化が確認されなかった。ケース2では、BF3.8、FA3.9、および LS3.9 ともに置換率と塑性 粘度との関係は同じような傾向となった。ケース3では、フロー値が目標より小さかった SF0.4-30 の水準や、BF0.5-50 の置換率 50%の水準でも塑性粘度が小さく、本節の測定範囲 であるせん断速度が 100s⁻¹まででは、ダイラタンシー性は確認することができなかった。 よって、粒径が 1.0µm より小さい混和材を置換した場合、置換率によらずダイラタンシー性状の発生は確認されず、粒径が 1.0~3.0µm 程度の場合、置換率が 30%程度でダイラタンシー性状は発生せず、粒径が 3.0µm 以上の場合、置換率が増加するほどダイラタンシー 性状は顕著に発生することが分かった。

図-4.11 混和材置換率と塑性粘度との関係

つぎに、図-4.12より、置換率と最大応力との関係も塑性粘度と同様な傾向を示した。しかしながら、ダイラタンシー性状が顕著に確認された BF3.8、BF1.7、BF1.0、FA3.9、および LS3.9 を 50%置換した水準、または D₅₀=3.5±0.5µm の比較であるケース 2 の水準のほとんどは、レオメータのトルクの上限により、正確な最大応力の計測ができなかった。

図-4.12 混和材置換率と最大応力との関係

ここで、低水結合材比領域の溶液中における結合材料の充填状況を考える。野村らの研 究⁶⁾では、C.T.Kennedyの余剰ペースト膜厚の算定方法⁷⁾をペーストに応用した 4.2 式⁸⁾ を用いて計算した場合、水セメント比 45%の普通コンクリートでは余剰水膜厚が 0.786μm に対し、水セメント比が 16%では僅か 0.003μm であり、粒子同士が極めて密接した状態で 溶液中に存在している。本節では、水セメント比が 18%であり、この場合の余剰水膜厚は、 0.050μm と算出され、水セメント比 18%でも粒子同士が極めて密接した状態で溶液中に存 在していることは明らかである。

> $F_w = [(1 + w/p) \times C_p - 1]/(a_p \times C_\rho) \times 10^3$ [4.2] ここに、 F_w : 余剰水膜厚 (µm) w/p : 水粉体体積比 C_p : 粉体の実積率 a_p : 粉体のブレーン比表面積 (mm²/mm³) を意味する。

っぎに、粒子を球形であると仮定した場合、2 次元における同一粒径の粒子同士が接近し た状態を考えると、図-4.13 に示す 2 種類のパターン⁹⁾ が考えられる。パターン A は、最 もゆるい充填体系のパッキング状態であり、4 つの粒子の中央部が正方形となるパターンで ある。一方、パターン B は、最も密な充填体系のパッキング状態であり、3 つの粒子の中央 部が正三角形となるパターンである。これらの粒径の間を埋めるための空隙部の直径は、 同一粒径の粒子の直径を d とすると、パターン A では 4.3 式、パターン B では 4.4 式で計 算される。

図-4.13 同一粒径の粒子同士が接近した状態(2次元)

$$\mathcal{N}\mathcal{A} - \mathcal{V}A \quad D_A = d \quad \times \quad (\sqrt{2} - 1) \tag{4.3}$$

$$\mathcal{N}\mathcal{A} - \mathcal{V}B \quad D_B = d \quad \times \quad (2 \quad / \sqrt{3} - 1)$$

$$[4.4]$$

ここに,

D_A :パターン A の場合の空隙を埋める円の直径 (μm)
 D_B :パターン B の場合の空隙を埋める円の直径 (μm)
 d :同一粒径の接近している粒子の直径
 を意味する。

図-4.13の2次元モデルを3次元モデルとし、単一粒径で多成分系に拡張した充填モデルの半径比、最密充填に必要な個数比、および充填率を表-4.9¹⁰⁾に示す。

次球	半径比	個数比	充填率(vol%)	配置
1 次球	1.000	1	74.1	六方最密充填
2 次球	0.414	1	79.3	8 面体配置の隙間
3 次球	0.255	2	81.0	4 面体配置の隙間
4 次球	0.177	8	84.2	1, 2 次球の間
5 次球	0.116	8	85.1	1,3次球の間
∞次球	極小	極大	96.1	無限回繰り返し

表-4.9 Horsfield による多成分系充填モデル¹⁰⁾

また,結合材の母体であるセメントの測定された体積基準の粒度分布と,体積基準の粒 度分布から算出した個数基準の粒度分布を図-4.14 に示す。個数基準の粒度分布は,4.5 式 ~4.9 式により算出した。

$$y_j = (\log_{10} x_j + \log_{10} x_{j+1})/2$$
[4.5]

$$z_j = 10^{y_j} \tag{4.6}$$

$$p_j = q_j / (z_j)^3$$
 [4.7]

$$s = \Sigma p_j (j=1 \not a \not b m)$$

$$[4.8]$$

$$r_j = p_j / s \times 100$$
 [4.9]

ここに,

m : 粒子径の分割数

- *x_j* : 粒子径 (j=1, 2, …m+1)
- *z_j* :各区間ごとの平均粒子径 (j=1, 2, …m+1)
- *q_i*:体積基準の差分(%)
- *r_i* : 個数基準の差分(%)

を意味する。

図-4.14 母体セメントの体積基準および個数基準の粒度分布

続いて,図-4.14 に示す母体セメントのそれぞれの粒径の個数から,表-4.9 に示した最密 充填に必要な 2~5 次径の個数を算出し,体積基準に変換した粒度分布を図-4.15 に示す。

図-4.15 本節で用いた母体セメントを最密充填する 2~5 次径の粒度分布

図-4.15 に示すように、単一粒径の場合、2~5 次径の頻度が理論上計算されるが、実際の セメントは、「単一粒径の粒度分布でなく」、かつ「角ばった粒子で存在」している。その ため、理論上計算される 2~5 次径においても、母体セメントとして存在している粒度分布 の最小値までの粒径の充填の必要性は低いと考えられる。図-4.15 に示す「体積基準」の粒 度分布は、本節で用いた母体セメントの粒度分布であり、この粒度分布から、1µm より小 さい領域の粒子は存在していないことが分かる。そのため、母体セメントが最密な充填状 態となった場合でも 1µm より小さい領域の粒子は必要不可欠となる。よって、結合材とし て充填性を向上するためには、5 次径より小さい領域の粒子(1µm より小さい領域の粒子) が、最密充填に必要であり、図-4.15 より、母体セメント 100%の場合、1µm より小さい領 域の5 次径の必要頻度は、およそ 1%程度であることが読み取れる。

図-4.15 に示した割合は、セメントの割合が 100%の時に必要な割合であるため、各混和 材を置換した場合のセメントの割合に必要な 5 次径の頻度割合を算出し、本節で使用した 混和材料との比較を実施することとした。本節の実験で用いた各混和材料を用いた水準の 体積割合におけるセメントの置換率を表-4.10 に示す。

=1.⊡.	混和材料の質量置換率(%)									
記与	10	20	30	50						
BF3.8										
BF1.7	80.2		69.2	47.0						
BF1.0	09.2	-	00.2	47.9						
BF0.5										
FA3.9	88.0	65.6	44.9	-						
LS3.9	88.5	66.7	46.2	-						
SF0.4	86.5	74.0	62.4	-						

表-4.10 実験水準の体積割合におけるセメントの置換率

各水準における空隙を充填するために必要と考えられる 5 次径の必要分布と各水準の混 和材料の粒度分布を図-4.16 に示す。また, Fuller-Thompson の理想粒度曲線と各水準の結 合材としての粒度分布と図-4.17 に示す。なお,ケース2は同一粒径における比較であった ため,図-4.16,および図-4.17 の考察の対象外とした。

図-4.16より,置換率10%の水準は,理論的に必要とされる5次径より頻度割合が小さい ことが分かる。ダイラタンシー性状は,BF3.8-10の水準で顕著に確認され,その他の水準 では確認されなかった。BF3.8 は,1µm より小さい領域の粒径が他の水準と比べて少ない 傾向である。

置換率 30%の水準は, BF3.8 を除いた水準の粒度分布は, ほぼ必要とされる分布に近い 割合の粒径が存在していた。また, BF0.5, BF1.0, および BF1.7 の順で塑性粘度は低いこ とから, 1µm より小さい粒径が多いほど, ダイラタンシー性状は発生しにくくなることが 分かった。置換率 30%の水準でも, ダイラタンシー性状は, BF3.8-30 の水準のみ顕著に発 生した。これは, 置換率 10%の水準である BF1.7-10 と比べても, 1µm 以下よりも小さい 領域の粒径の割合が少ないため, ダイラタンシー性状が大きくなったと考えられる。

図-4.16 空隙を充填するために必要と考えられる5次径と各水準の実際の粒度分布

置換率 50%の水準は、全体的に必要分布より多い割合で粒径が多い。ダイラタンシー性 状も BF0.5-50 の水準を除いて、顕著に確認された。BF0.5 は 1µm より小さい 0.5µm 程度 の粒径が、BF1.0 は 1µm 前後の粒径が、BF1.7 は 2µm 程度の粒径が、BF3.8 は 4µm 程度 の粒径がシャープに存在している。ダイラタンシー性状は単一粒径の粒子ほど充填性が低 下し、摩擦力や付着力により発生するため、置換率 50%では、混和材料の単一粒径の割合 が増加し、かつ、結合材としての充填性が低下し、ダイラタンシー性状が発生したと推察 される。しかしながら、1µm より小さい粒子に関しては、単一粒径の割合が増加しても、 ダイラタンイシー性状は発生しないことが分かった。

SF0.4 の水準では、必要分布と比べて、1µm 以上の粒径が明らかに不足しているが、すべての水準においてダイラタンシー性状は確認されなかった。ここで、サブミクロン領域の

粒子であるシリカフュームは、水結合材比の小さい領域の溶液中の分散は、1µm 程度大き さまで凝集し、存在していることが既往の研究^{11),12)}から把握されている。また、本節の 実験において、シリカフューム置換率を30%まで大きくしても、あるいは、BF0.5を50% まで置換率を大きくしてもダイラタンシー性状は、確認できなかった。つまり、1µm より 小さい領域の単一粒径の割合が増加してもダイラタンシー性状は発生していない。これは、 1µm より小さい領域の粒子は、セメントの隙間を充填するより、セメント粒子の周りに存 在する形態となっていると考えられる。図-4.16のSF0.4-10の粒度分布が、1µm 程度まで 凝集していると仮定した場合の粒度分布を黒の破線で示した。その結果、BF0.5-10、ある いは BF1.0-10 と同様な頻度分布となる。

また、ダイラタンシー性状が顕著に発生する粉体として、コーンスターチや片栗粉があ るが、これらの一般的な粒径は、平均粒径で 5~30µm¹³⁾ であり、サブミクロン領域の粒径 でない。1µm より小さい領域のサブミクロンの粒子には、摩擦力などの物理的な力よりも、 ファン・デル・ワールス力などの粒子を構成する分子あるいは原子内の電子の運動に伴っ て生じる相互作用力といった粒子間付着力の影響が大きい¹⁴⁾ と考えられ、ダイラタンシー 性状が発生する際の粒子同士の摩擦力や付着力への影響は小さいと考えられる。

細貝らの研究⁵)で,ダイラタンシー性状が顕著に発生したブレーン比表面積で6,000cm²/g, または 10,000cm²/g の高炉スラグ微粉末を用いた場合のモルタルに,0~10%の割合で結合 材に対してシリカフュームを内割り置換した場合,シリカフューム置換率が大きくなるほ どダイラタンシー性状は緩和される結果となっている。この結果からも 1µm より小さい粒 径の有効性が判断できる。

続いて、結合材としての粒度分布に着目した場合、図-4.17から、Fuller-Thompsonの理 想粒度曲線と比べると、BF0.5-10、BF1.0-10 が理想曲線と近いことが分かり、BF3.8の水 準のみ, 置換率 10, 30, および 50%のすべての水準で 1μm より小さい割合の粒径は, Fuller-Thompson の理想粒度曲線より少なく、ダイラタンシー性状が顕著に発生した。ダ イラタンシー性状が発生していない置換率 30%の水準では, 理論曲線よりも 1µm 前後の粒 径が多いと判断できるが、図-4.16 で考えられた必要とされる粒度分布は近い値であったこ とから、ダイラタンシー性状が発生しなかったと思われる。ダイラタンシー性状が顕著に 確認された置換率 50%である BF3.8-50,BF1.7-50,BF1.0-50 の水準は,母体セメントの 最頻値であるモード径の 22μm よりも混和材のモード径の頻度の高さが大きくなっている。 つまり、結合材としての粒径がシャープとなり、単一粒径に近い分布となっていることが 判断できる。これは,BF3.8-10 も単一粒径であることが判断できる。これらの水準はダイ ラタンシー性状が顕著に発生した水準であるため、1µm より大きい粒子では、やはり単一 粒径に近づくほど, ダイラタンシー性状は発生することが分かった。置換率 30%の水準は, ダイラタンシー性状がほとんど発生しなかったが,図-4.17 からも全体的にブロードな分布 であることが判断でき、セメントのモード径の頻度より混和材の頻度の割合が低いことが 判断できる。

図-4.17 Fuller-Thompson の理想粒度曲線と各水準の結合材としての粒度分布

以上のことより,ダイラタンシー性状の発生には,結合材の粒度分布の影響が大きいこ とが分かった。

1µm 以上の領域では、母体セメントより単一粒径の割合が大きくなると、結合材としての充填性が低下し、ダイラタンシー性状が顕著に発生することが分かった。

1µm より小さい領域の粒子は、その割合が増加してもダイラタンシー性状は発生しにくいことが分かり、ダイラタンシー性状の緩和に必須な粒径である知見を得た。

本節の結果から、ダイラタンシー性状を緩和する最適な粒径、および置換率として、 D₅₀=1.5±0.5µm 程度の混和材料を用いる場合は、20~30%の置換率が最適であると考えられる。D₅₀=1.0µm より小さい粒子の場合は、10~20%の置換率が最適であると考えられる。 1µm より小さい領域の粒子は、せん断速度 100s⁻¹までの速度ではダイラタンシー性状は確 認されず,モルタルやコンクリートでのスコップなどで練り返しを行う際の作業では,このせん断速度が100s⁻¹までの速度領域で作業していると考えられる。

よって、ダイラタンシー性状を緩和するためには、1µm より小さい領域の粒径の粒子を 混和することが重要であることが分かった。

4.3 ダイラタンシー性状の簡易的評価手法の妥当性の検証

ダイラタンシー性状の発生因子として,混和材料の粒径の影響が大きいことを把握でき たが,ダイラタンシー性状の簡易的な評価方法がない。そこで,**4.2節**で得られた結果 である,レオメータから得られた塑性粘度とフローの200mm 通過時間,ペーストの一体化 時間,練り混ぜ時のミキサの最大電流,貫入抵抗値,および引張抵抗値との比較を行い, ダイラタンシー性状の簡易的な定量評価方法の妥当性について確認を行った。簡易的な定 量評価方法として,これら試験項目として選定した理由を**表-4.11**に示す。

本節では、4.2節で得られたレオメータの結果を、せん断速度が 100s⁻¹ までレオメー タのトルク上限に達することなく測定が可能であった水準、およびレオメータのトルク上 限で正確な測定ができなかった水準に選別し、評価を行った。

レオメータから得られる最大応力と塑性粘度との関係を図-4.18 に示す。せん断速度が 100s⁻¹までレオメータのトルク上限に達することなく測定が可能であった水準は,高い相関 が確認されたが,レオメータのトルク上限で正確な測定ができなかった水準の相関は低か った。これは,実際はトルクの上限値を超える大きなトルクが生じており,上限値より大 きな最大応力の測定が可能であれば,ダイラタンシー性状が顕著に発生している際の正確 な最大応力の測定が可能となると思われる。よって,レオメータから得られるダイラタン シー性状の定量値としては,最大応力より塑性粘度の方が真値であると判断されたため, ダイラタンシー性状の簡易的な評価手法の比較として,塑性粘度と比較することとした。

試験項目	理由
フローの 200mm 通過	粘性の評価手法の一種であるが、ある一定の降伏値から瞬間的に
	流体が変化するので、ダイラタンシー性状の大小を評価できると
h4,1月1	推測
	ダイラタンシー性状は,粉体の充填性が向上すると,緩和される。
ペーストの一体化時間	一方で、粉体の充填性が向上すると、練混ぜ時の一体化するまで
「ハーストの一体化时间	の時間は短くなるため、ダイラタンシー性状との相関があると推
	測
練り混ぜ時のミキサの	ダイラタンシー性状が発生すると、摩擦などの抵抗で練混ぜ時の
最大電流	負荷が増加し,最大電流が大きくなると推測
	ダイラタンシー性状は、急激な力(体積変化)に対して摩擦力な
貫入抵抗值	どが生じる際に発生する。そのため,急激に貫入する際の抵抗力
	の大小によりダイラタンシー性状の大小を測定できると推測
引進抵抗病	貫入抵抗と同様の考えから、貫入の反対の引張抵抗値の測定によ
刀成的加阻	り、ダイランタンシー性状の大小を測定できると推測

表-4.11 ダイラタンシー性状の間的な評価手法として選定した理由

200mm 通過時間と塑性粘度との関係を図-4.19 に示す。200mm 通過時間と塑性粘度との 相関は低いことが分かった。200mm 通過時間はある一定の降伏値から流動する粘性の大小 の程度を評価する指標であると考えられる。そのため、粘性の評価指標からダイラタンシ ー性状を簡易的に評価することは困難であることが分かった。

図-4.19 200mm 通過時間と塑性粘度との関係

貫入抵抗値と塑性粘度との関係を図-4.20 に示す。塑性粘度と貫入抵抗値との間に比較的 大きい相関が確認された。しかしながら,塑性粘度が小さい,つまりダイラタンシー性状 が低い領域での貫入抵抗値は0となり,ダイラタンシー性状の低い領域での定量評価は困 難であると判断された。細貝らの研究⁵⁾では,ダイラタンシー性状の低い領域でも定量評 価が可能であった。これは,珪砂4号のみの単一粒径に近い細骨材を用いたモルタルでの 評価であり,細骨材と結合材との間で生じる摩擦力も生じ,本研究の水準のセメントペー ストより大きな抵抗力が生じていたと考えられる。そのため、本研究で得られた塑性粘度 で100Pa・sより小さい領域のダイラタンシー性状の評価は困難であると考えられた。

図-4.20 貫入抵抗値と塑性粘度との関係

引張抵抗値と塑性粘度との関係を図-4.21 に示す。引張抵抗値は、塑性粘度が小さい領域 においても大きい相関が確認できた。貫入抵抗値と同じ理論(瞬時にトルクを加えた際の 抵抗力の測定)であるが、引張抵抗値の方が、貫入抵抗値と比べて、ダイラタンシー性状 の程度が小さい領域から正確な定量評価が可能であることが分かった。これは、貫入抵抗 値の抵抗断面積が 100mm²に対し、引張抵抗値の抵抗断面積が 10,000mm²と、100 倍の断 面積であり、抵抗を与える際の断面積あたりの速度も、貫入抵抗値の場合は 0.002s/mm² に対し、引張抵抗値の場合は 0.00001s/mm²と 200 倍の大きさであり、抵抗断面積も大きく、 かつ瞬間的に与える抵抗も大きいためであると考えられる。そのため、貫入抵抗値の場合 の抵抗断面積を大きくすることで、引張抵抗と同様にダイラタンシー性状の程度が小さい 領域からの定量評価も可能であったと考えられる。

図-4.21 引張抵抗値と塑性粘度との関係

ミキサの最大電流と塑性粘度との関係を図-4.22 に示す。200mm 通過時間と同様に、ミ キサの最大電流と塑性粘度との相関は低いことが分かった。これは、野村らの研究¹²⁾と同 様に、ミキサの負荷電流は、結合材と水が一体化するまでの段階に表面水分の増加が認め られ、ミキサの練り混ぜトルクが粒子間隙にある過剰水分を表面に浸出せしめたためであ ると考えられる。つまり、シリカフュームのように比表面積の大きな粒子を用いた場合、 過剰水分の浸出に必要な練り混ぜトルクは大きくなると予測できる。そのため、ダイラタ ンシー性状とミキサの最大電流との相関は低くなったと考えられた。

図-4.22 ミキサの最大電流と塑性粘度との関係

ペーストー体化時間と塑性粘度との関係を図-4.23 に示す。塑性粘度の低いダイラタンシ ー性状の小さい領域では、ペーストー体化時間と塑性粘度は、高い相関が得られることが 分かった。ここで、ペーストの一体化までの時間とミキサの最大電流までの時間との関係 を図-4.24 に示す。図-4.24 より、ペーストの一体化までの時間とミキサの最大電流までの 時間との間には高い相関があり、ペーストの一体化までの時間は、すべての水準において、 ミキサの最大電流の 0.6 倍程度の時間であることが分かった。また、レオメータでの測定が 正確にできなかった水準においては、ペーストー体化時間と塑性粘度との相関は低いこと が分かった。

78

図-4.23 ペースト一体化時間と塑性粘度との関係

図-4.24 ペースト一体化時間と最大電流までの練混ぜ時間との関係

以上のことより,ダイラタンシー性状の簡易的な定量評価方法としては,引張抵抗値に よる評価が妥当であることが分かった。貫入抵抗値による評価も,抵抗断面積の増加など 貫入抵抗値を大きく評価するための測定方法の検討により,簡易的定量評価が可能である ことも把握した。また,ダイラタンシー性状の程度が小さい領域では,練り混ぜ時のペー ストー体化時間によりダイラタンシー性状の定量評価が可能であることが分かった。

しかしながら、引張抵抗値などの定量値は、ミキサの練り混ぜ効率の違い(練り混ぜミ

キサの違い),水結合材比の違い(余剰水膜厚の違い),骨材による摩擦力の影響などにより,定量値の絶対値が変化すると考えられる。そのため,ダイラタンシー性状の評価を行う場合,現状配合のダイラタンシー性状の定量値の絶対値を把握した上で,検討配合のダ イラタンシー性状の定量値との比較を行うことで,より正確に簡易的な評価が可能である と考えられる。

4.4 まとめ

本章では、低水結合材比領域でのダイラタンシー性状の発生因子について解明を行うと ともに、ダイラタンシー性状を緩和するシングルミクロン混和材料の最適と考えられる条 件の確認を行った。また、回転粘度計から得られたレオロジー特性とダイラタンシー性状 の数種類の簡易的な評価方法の妥当性の検証を行った結果、以下の知見を得た。

- (1) ダイラタンシー性状の発生因子として,混和材料の粉体特性である濡れ性,および 粒子形状の影響は低い。
- (2) ダイラタンシー性状の発生には,結合材の粒度分布の影響が大きく,とくに 1µm より小さい粒径の粒子を混和することが重要である。
- (3) 粒径が 1µm 以上の領域では, 母体セメントより単一粒径の割合が大きくなるとダイ ラタンシー性状が顕著に発生する。
- (4) 粒径が 1µm より小さい領域の粒子は, その割合が増加してもダイラタンシー性状は 発生せず, 1µm より小さい領域の粒子は, ダイラタンシー性状の緩和に必須な粒径 である。
- (5) ダイラタンシー性状を緩和する最適な粒径、および置換率として、D₅₀=1.5±0.5µm 程度の混和材料を用いる場合は、20~30%の置換率が最適であり、D₅₀=1.0µm より 小さい粒子の場合は、10~20%の置換率が最適である。
- (6) ダイラタンシー性状の簡易的な定量評価方法としては、引張抵抗値による評価が妥当である。貫入抵抗値による評価も、抵抗断面積の増加など貫入抵抗値を大きく評価するための測定方法の検討により、簡易的定量評価が可能である。

しかしながら、実際のコンクリートでは、粗骨材や細骨材など骨材因子が含まれるため、 コンクリートにおいて 1µm より小さい粒径の粒子の有効性を確認する必要がある。これは、 **第7章**で検証を実施する。一方で、高炉スラグ微粉末において、1µm 以下のサブミクロン 領域の粉体を製造することが、現状の技術では、湿式粉砕でないと多量に製造が難しい。 そのため、コンクリート用混和材として、高炉スラグ微粉末の 1µm 以下の粒子の適用は現 実的でない。そこで、高炉スラグ微粉末より被粉砕性が良好であるフライアッシュを乾式 粉砕および分級において製造し、検証を行うこととした。

参考文献

- 中澤拓也ほか:高炉スラグ高含有セメントペーストの充てん性と流動性に及ぼす高炉ス ラグ超微粉末の影響とそのキャラクタリーゼーション,第 68 回セメント技術大会, pp.16-17, 2014.5
- 小野哲夫: CWM 粒子の球状化効果の円形度による評価, J. Soc. Powder Technol., Japan, 39, pp.580-586, 2002
- 3)加藤正和:表面の「ぬれ」とは? ~高分子材料(フィルム・基板,繊維,粉体)の「ぬれ性」評価方法~,特集機能性高分子材料に求められる界面・表面の制御技術,pp.26-29,2010.3
- 4) 三輪茂雄:粉粒体工学,朝倉書店, pp.140-145, 1972
- 5) 細貝朱里ほか: 高炉スラグ微粉末を多量に含むモルタルのダイラタンシー性状および改善方法に関する検討, コンクリート工学年次論文集, Vol.41, No.1, pp.1055-1060, 2019
- 6)野村博史ほか:低水結合材比ペーストの練混ぜによる粒子の凝集・分散状態評価、セメント・コンクリート論文集,Vol.69,pp.573-579,2015
- C.T.Kennedy: The Design of Concrete Mixers, Journal of American Concrete Institute, Vol.36, pp.373-400, 1940
- 8) 谷川恭雄ほか:フレッシュコンクリートの流動特性とその予測, セメントジャーナル社, pp.52-62, 2004
- 9) D.J.Cumberland : The packing of particles, ELSEVIER, pp.41-61, 1987
- 10) 丹羽真:高熱伝導性粉体塗料アロンパウダー®L-3000 シリーズ,東亞合成グループ研 究年報 5, pp.1-4, 第 22 号, 2019
- 11) 笠井哲郎ほか:セメント-シリカフューム混合粉体の最密充填の評価方法に関する研究, 東海大学紀要工学部, Vol.35, No.1, pp.175-179, 1995
- 12)野村博史ほか:粉体粒子の分散性および充填性が超高強度コンクリートの練混ぜ性に 及ぼす影響,セメント・コンクリート, No.865, pp.35-40, 2019.5
- 13) 二国次郎: 澱粉化学ハンドブック, 朝倉書店, pp.299-410, 1977
- 14)木俣光正:第1部 スラリー・ペーストの調整・分散と安定性、技術情報教会、スラリー・ペーストの調整および分散性コントロール、粘弾性測定とその応用、pp.1-84、2018.12

第5章

シングルミクロン高炉スラグ微粉末の乾燥収縮

5.	1	概論・・・・・・・・・・・・・・・・・・・・・・・・・・・83
5.	2	高炉スラグ微粉末の細孔構造が硬化体の収縮に及ぼす影響のメカニズムの
		解明・・・・・・・・・・・・・・・・・・・・・・・84
5.	3	高炉スラグ微粉末の細孔構造が硬化体の収縮に及ぼす影響の検証・・・・・98
5.	4	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 104

5.1 概論

一般的に粉末度の大きい高炉スラグ微粉末を用いるほど強度発現性は良好¹⁾となり,シ ングルミクロン領域の高炉スラグ微粉末は初期強度改善目的などで補修関連のモルタル材 料の混和材として利用されており,更なる初期強度の改善が生産性向上の観点から求めら れている。

一方で,粉末度の大きい高炉スラグ微粉末を用いるほど,硬化体の収縮が大きくなる²⁾ とされており,シングルミクロン高炉スラグ微粉末を用いた硬化体の収縮特性について不 明点が多い。また,シングルミクロン高炉スラグ微粉末を用いた場合の硬化特性や収縮特 性の改善などに着目した研究は少なく,今後の補修関連のモルタル材料の性能向上を行う ためには,このような研究は必要であると考えられる。

そこで、**第3章**において、D₅₀=3.5±0.5µm、および D₅₀=1.5±0.5µm の2種類のシング ルミクロン高炉スラグ微粉末を試作し、フレッシュ性状および硬化性状の各種基本特性の 把握を実施し、D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末は、補修関連のモル タル材料の性能向上に繋がる可能性を確認した。**第3章**において基本特性を把握した際に、 乾燥収縮は、粒径の小さい高炉スラグ微粉末を用いた方が大きくなると予測されたが、粒 径の小さい高炉スラグ微粉末を用いた方が小さくなる結果となった。この要因として、D₅₀ =1.5±0.5µm の高炉スラグ微粉末は、D₅₀=3.5±0.5µm の高炉スラグ微粉末より粒径が小 さいにも関わらず BET 比表面積が小さい高炉スラグ微粉末であるためであると考えられた。 シングルミクロン高炉スラグ微粉末の乾燥収縮が粒径の割に低減できるメカニズムの解明 ができれば、今後のシングルミクロン領域の高炉スラグ微粉末の使用に役立つと考えられ る。

よって、本章では、乾燥収縮に及ぼす高炉スラグ微粉末の細孔構造の影響を評価することを目的とし、硬化体の細孔径分布の確認を行った。

粒径が同程度でも BET 比表面積(細孔構造)の異なる,または BET 比表面積(細孔構造)が同程度でも粒径の異なるシングルミクロンの高炉スラグ微粉末を試作し,ペースト 硬化体の細孔径分布に着目して乾燥収縮に及ぼす高炉スラグ微粉末の影響の評価を5.2 に,モルタル硬化体での検証を5.3に,本章のまとめを5.4に記述した。

83

5.2 高炉スラグ微粉末の細孔構造が硬化体の収縮に及ぼす影響のメカニズムの解明

5.2.1 使用材料

本節で使用した材料を表-5.1 に,高炉スラグ微粉末の特徴を表-5.2 に,高炉スラグ微粉 末の粒度分布を図-5.1 に,高炉スラグ微粉末の走査型電子顕微鏡2次電子像(SEM 画像) を写真-5.1 に示す。

表-5.1 に示した粒子の丸さを示す円形度,および写真-5.1 より,本節で使用したシングル ミクロン高炉スラグ微粉末である BF3.4, BF3.7,および BF1.7 の粉体形状は,ほぼ同様の 形状である。円形度は,1は円を示し,正六角形で 0.952,正五角形で 0.93,正方形で 0.785 となるため,BF3.4, BF3.7,および BF1.7 は,正五角形に近い形状である。

表-5.1 に示したブレーン比表面積および D₅₀,および図-5.1 より,BF3.4 および BF3.7 は 同一粒径の粉末度である。一方で,細孔構造に着目すると,表-5.1 より,細孔直径は同程 度だが,BET 比表面積が,BF3.7 は 3.15m²/g に対し,BF3.4 は 1.58m²/g と半分程度とな っている。細孔容積もBF3.7 の方が BF3.4 の約 2 倍の容積を有している。つまり,BF3.4 と BF3.7 は,同一粒径であるが細孔構造(BET 比表面積)は異なる高炉スラグ微粉末であ る。

BF1.7 は, BF3.4 の半分程度の粒径の粉末度であるが, BET 比表面積が, BF3.7 は 3.15m²/g に対し, BF1.7 は 2.83m²/g と同程度となっている。つまり, BF1.7 は, BF3.7 の粒径は半分であるが, 細孔構造(BET 比表面積)は, 同程度の高炉スラグ微粉末である。

BF3.7 は竪型ミルによる粉砕後,気流式の分級機により製造し,BF3.4 は超微粉末ミルによる粉砕のみで製造し,BF1.7 はBF3.4 を気流式の分級機により製造した。

ここで,BET 比表面積,細孔容積,および細孔直径は,温度 105℃で 5 時間真空吸引に よる前処理後,窒素ガスの吸着量から算出した。粒度分布は,レーザー回折式粒度分布測 定器(Microtrac MT3300EXII)によって測定を行った。円形度は,**第4章**と同様に注入型 画像解析粒度分布計(IF-3200)によって個数基準での測定を行った。

84

夕称	材料		記号	密度	D ₅₀	強熱減量
石竹			記与	(g/cm_3)	(μm)	(%)
練混ぜ水	水道水	W		1.00	-	-
セメント	普通ポルトランドセメント		Ν	3.16	17.1	1.03
混和材	シングルミクロン	В	BF3.7	2.91	3.66	0.55
			BF3.4		3.43	0.56
			BF1.7		1.73	0.59
混和剤	高性能 AE 減水剤	SP		ポリカルボン酸エーテル系		
	消泡剤		DF	ポリアルキレングリコール誘導体		

表-5.1 使用材料

表-5.2 高炉スラグ微粉末の特徴

記号	ブレーン比表	D_{50}	BET 比表面積	平均細孔直径	全細孔容積	田彰南
	面積(cm²/g)	(μm)	(m^2/g)	(nm)	$(\times 10^{-2} \text{ cm}^3/\text{g})$	口形皮
BF3.7	11,500	3.66	3.15	16.66	1.313	0.921
BF3.4	12,200	3.43	1.58	16.09	0.637	0.924
BF1.7	21,600	1.73	2.83	14.91	0.967	0.925

写真-5.1 高炉スラグ微粉末の SEM 画像

5.2.2 実験水準と練り混ぜ方法

本節では、高炉スラグ微粉末の細孔構造の違いに着目して乾燥収縮や硬化体の細孔直径 の変化を把握するため、骨材要因を除外したセメントペーストで実験を行った。シングル ミクロン高炉スラグ微粉末をそれぞれ普通ポルトランドセメントに対して質量比で 50%内 割り置換した3水準とした。

ペーストの配合は、JASS 5M-701「高強度コンクリート用セメントの品質基準」を参考とし、水結合材比は 30%とした。

練り混ぜは、JASS 5M-701 を参考とした。結合材であるセメントとシングルミクロン高 炉スラグ微粉末は、練り混ぜ時に別々に計量して、練り混ぜ時に混合した。練り混ぜは、「空 練 30 秒 → 注水 → 2 分練混ぜ → 20 秒掻き落とし → 2 分 40 秒練混ぜ → 5 分静置 → 30 秒練混ぜ」とした。ミキサは、10L 容積のモルタルミキサを用い、練り混ぜ容量 2L とし、 回転数 139rpm(低速)にて行った。

5.2.3 実験項目と評価方法

(1) セメントペーストのフレッシュ性状

0打フローと空気量は、「**第3章 3.5.1 フレッシュ性状**」と同様に、JASS 5M-701 に準拠して測定を行った。0打フローは 280±10mm となるようにポリカルボン酸エーテル 系の SP 添加量によって調整した。空気量は 3.0%以下を目標とした。

(2) 高炉スラグ微粉末の反応率

同一粒径であるが、細孔構造が異なることで高炉スラグ微粉末の反応率の違いが生じ、 その反応率の違いにより、乾燥収縮に変化を生じているか確認する目的で、高炉スラグ微 粉末の反応率の定量を実施した。

高炉スラグ微粉末の反応率の定量は、羽原らの研究³⁾を参考とし、サリチル酸-メタノー ル法と KOH-サッカロース法を組み合わせた選択溶解法にて行った。羽原らの研究では、 高炉セメント B 種相当(高炉スラグ微粉末 4000 相当)を対象とし、残渣のろ過に 5 種 C のろ紙を用いているが、5 種 C のろ紙の保持粒子径が 1µm である。本節で使用した高炉ス ラグ微粉末には 1µm 以下の粒子も存在し、ろ紙によるろ過では一部の粒子が通過してしま ったため、遠沈管を用いた遠心分離によりろ過を実施した。また、セメントペーストは結 合水を含むため、溶解残渣の量を求める際に結合水量を考慮する必要がある。高炉スラグ 微粉末の質量の増加を考慮して 700°Cの温度条件で強熱減量を測定し、この強熱減量から結 合水量を補正した。

高炉スラグ微粉末の反応率の測定までの養生,および前処理条件を以下に示す。供試体の大きさは、40×40×160mmとし、練混ぜ時の注水から48時間後に脱型し、温度20±1℃,湿度60±2%の恒温恒湿室に入れ、乾燥期間0,1,3,7,および28日における高炉スラグ 微粉末の反応率の定量を行った。なお、前処理は、ハンマーで5mm以下の小片に粉砕した後、試料をアセトンに5分間浸せきすると同時に微粉砕を行い、水和を停止し、7日間20℃ 環境のデシケータにて乾燥を行った。

ここで, 注水から 48 時間までの養生は, NEXCO 構造物施工管理要領の「左官工法によ る断面修復の性能照査」の項目の硬化収縮性試験の養生期間を参考とした。乾燥期間 0, 1, 3, 7 および 28 日における測定は, **第3章**で得られた知見において, 乾燥期間 7 日までの初 期の収縮の差が大きかったため, 初期材齢の乾燥期間での測定を実施した。

以下に、高炉スラグ微粉末の反応率の試験手順を示す。

- ① 試料 0.5g を電子天秤で測りとり,容量 60mL 程度のポリエチレン製の遠沈管に入れる。
- ② 別のポリエチレン製容器にサリチル酸 8.0g, メタノール 40mL をいれて, 撹拌する。
- ③ ②の溶液を①に移し, 撹拌装置を用いて, ③の試料を 160min⁻¹で1時間撹拌する。
- ④ 撹拌終了後,速やかに遠心分離機(CN-2060)に遠沈管をセットし,回転数3,000rpm にて3分間遠心分離を行う。

- ⑤ 遠心分離終了後,静かに上澄み溶液を捨て,アセトン 15mL をいれて,④と同じ条件にて遠心分離を行う。
- ⑥ 遠心分離終了後,静かに上澄み溶液を捨て,蒸留水 15mL をいれて,④と同じ条件 にて遠心分離を行う。
- ⑦ 遠心分離終了後,静かに上澄み溶液を捨て,蒸留水 15mL をいれて,沈殿物ととも にビーカーに移す。ビーカーには、事前に水酸化カリウム(KOH)を 1.0g、サッ カロース 3.0g 入れておく。
- ⑧ 遠沈管に付着している沈殿物をビーカーに傾けて、少量の蒸留水で洗い流し、蒸留水の合計が 30mL となるまで蒸留水を入れる。
- ⑨ ホットヒータを使用し、⑧のビーカーを温度 90℃で、2 分間ガラス棒で撹拌する。
- ⑩ 遠沈管に⑨の溶液を入れる。ビーカーに付着している試料は、蒸留水で遠沈管に洗い流す。
- ① 10分程度冷ましてから、遠沈管の蓋をしめる。
- ② 遠心分離機に遠沈管をセットし、回転数 3,000rpm にて 3 分間遠心分離を行う。
- 13 ⑤の操作を行う。
- (4) ⑥の操作を行う。
- ⑤ 蒸留水で遠沈管に付着した試料をつるぼに流し込み, 250℃で 30 分間乾燥を行う。
- ⑥ ⑤の試料を電気炉にいれ、950℃で1時間強熱させる。
- ⑪ 電気炉から取り出したるつぼをデシケータに入れ,室温になるまで保管する。
- 18 残渣の質量を測定する。測定を3回繰り返し、残渣を3回の平均値とする。
- ⑨ ①と同様の試料を 2.000g るつぼに計量し、電気炉にいれ、700℃で 30 分間強熱させ、⑪の操作を行い、強熱減量を測定する。
- ② 以下の 5.1 式により、高炉スラグ微粉末の反応率を算出した。セメントペースト中の無水物をベースとした溶解残渣を、5.1 式の無水物換算した溶解残渣(S_{SL})および無水物換算 OPC の溶解残渣(S_N)とした。

$$R_{SL} = \{ S_L - (S_{SL} - S_N \times C \div 100) \} \div S_L \times 100$$
 [5.1]

ここに,

- *R*_{SL} : 高炉スラグ微粉末の反応率(%)
- *S*_L : 結合材の高炉スラグの割合(%)
- S_{SL} : 無水物換算した溶解残渣(%)
- *S_N* : 無水物換算 OPC の溶解残渣(%)
- *C* : 結合材の OPC の割合(%)

を意味する。
(3) 乾燥収縮と質量変化率

乾燥収縮の評価は、「**3章の3.5.4 乾燥収縮**」と同様に JIS A 1129-3 に準拠して測 定を行った。

なお,乾燥収縮および質量変化率の測定は,「(2)高炉スラグ微粉末の反応率」の測定 と同じ乾燥期間において実施した。

(4) 細孔径分布

本節での細孔径分布の測定は、窒素ガス吸着法と水銀圧入法の2種類の手法を用いた。 一般的に、水銀圧入法でモルタルの細孔径分布を測定することが多いが、本研究では、 シングルミクロン領域の粉末度の大きい高炉スラグ微粉末を用いていることと、李らの研 究によると10µm 以下の細孔中の水分の蒸発は乾燥収縮に大きく影響を与えるとの報告⁴⁾ や、Bentur らは30nm 以下の空隙量と乾燥収縮との間には密接な関係があるとの報告⁵⁾が ある。そのため、ミクロからメソ孔を対象とした窒素ガス吸着法でも測定を行った。

水銀圧入法では、細孔直径の測定下限~300nm(0.3μm)までを考察の対象とし、窒素ガス吸着法では、細孔直径 1.3nm~30nm について考察の対象とした。

水銀圧入法は,自動水銀ポロシメータ・細孔分布測定装置(POREMASTER 60GT)を用い,窒素ガス吸着法は,4連式比表面積・細孔径分布測定装置(NOVA-TOUCH型)を用いた。

以下に、細孔径分布の試験手順を示す。

- 40×40×160mmの大きさの供試体を作製し、練混ぜ時の注水から48時間後に脱型し、温度20±1℃、湿度60±2%の恒温恒湿室に入れ、測定を行う乾燥期間まで保管する。
- ② 測定する乾燥期間において、供試体の試料を 2.5~5mm の大きさとなるように粉砕・篩分け調整を行う。
- ③ 2.5~5mmの大きさの試料を、マイナス45℃の冷凍庫で3時間予備凍結を実施し、その後、凍結乾燥機(EYELA FDS-1000)で凍結乾燥を行い、乾燥終了後に常温・常圧に戻し、測定までデシケータにて保管を行う。なお、窒素ガス吸着法は室温下で24時間真空減圧を、水銀圧入法は室温下で1時間真空減圧を行ってから細孔径分布の測定を行う。

5.2.4 実験結果および考察

(1) セメントペーストのフレッシュ性状

フレッシュ性状の試験結果を表-5.3 に示す。BF3.4, BF1.7, および BF3.7 の順で, 同一 フローとするための SP 添加率は小さくなった。表-5.2 に示した BF3.7, BF3.4, および BF1.7 の円形度が同程度であることから, 高炉スラグ微粉末の粒子形状による影響ではないと考 えられる。一方で, BF3.7, BF1.7, および BF3.4 の順で BET 比表面積が大きいことから, 高炉スラグ微粉末の細孔構造 (BET 比表面積) に起因して, BET 比表面積の小さい高炉ス ラグ微粉末の方が, その粒子表面への SP の吸着量が低くなったと考えられる。

水準 No.	SP/B	0打フロー	練上り温度	空気量
(スラグ種類)	(%)	(mm)	(°C)	(%)
BF3.7	0.60	288	21.7	0.6
BF3.4	0.45	281	21.6	0.7
BF1.7	0.55	284	21.3	0.5

表-5.3 フレッシュ性状

(2) 高炉スラグ微粉末の反応率

各乾燥期間における高炉スラグ微粉末の反応率を表-5.4,および図-5.2 に示す。図-5.2 より,各乾燥期間における BF3.7 および BF3.4 の反応率はほぼ同様であることが分かった。 BF1.7 は,粒径が BF3.7 および BF3.4 の半分程度の大きさであり,スラグ反応率も2割~6 割程度向上することが分かった。

モルタル配合における圧縮強度とスラグ反応率の関係を図-5.3 に示す。図-5.3 より,ス ラグ反応率と圧縮強度は正の相関があることが分かる。第3章において,BF1.5±0.5µmの シングルミクロン高炉スラグ微粉末の圧縮強度が向上した要因として,スラグ反応率の要 因が大きいと考えられた。

BF3.7 および BF3.4 の圧縮強度とスラグ反応率がほぼ同様の推移であることから, BF3.7 および BF3.4 のペーストの乾燥収縮に高炉スラグ微粉末の反応率および圧縮強度の違いに よる影響はないと考えられる。また,高炉スラグ微粉末の反応率は,高炉スラグ微粉末自 体の BET 比表面積の大小による変化はほとんどないことも分かった。

水準 No.	スラグ反応率(%)						
(スラグ種類)	0日	1日	3日	7日	28日		
BF3.7	7.7	14.4	14.1	35.4	49.0		
BF3.4	6.4	12.3	14.4	39.0	47.3		
BF1.7	8.9	24.1	25.4	48.0	57.9		

表-5.4 高炉スラグ微粉末の反応率

図-5.2 各乾燥期間における高炉スラグ微粉末の反応率

図-5.3 スラグ反応率とモルタル配合における圧縮強度との関係

(3) 乾燥収縮と質量変化率

各水準の乾燥収縮を図-5.4 に、質量変化率を図-5.5 に示す。

図-5.4 より, BF3.4, BF1.7, および BF3.7 の順で乾燥収縮は小さくなった。これは, 高 炉スラグ微粉末の BET 比表面積が大きくなるほど,乾燥収縮は大きくなっている。一方で, 質量変化率は, BF3.4, BF3.7, および BF1.7 の順で大きくなった。同一粒径で比較すると, BF3.4 は, BF3.7 と比べて収縮が小さく, 質量の変化(水分の蒸発)が大きいことが分かった。同程度の BET 比表面積で比較すると, BF1.7 の方が, BF3.7 より, 収縮が小さく, 質量の変化(水分の蒸発)も小さいことが分かった。

(4) 細孔径分布

各水準の水銀圧入法による各乾燥期間の細孔分布を図-5.6 に,各水準の水銀圧入法によ る各乾燥期間における細孔容積の変化を図-5.7 に示す。

図-5.6 各水準の水銀圧入法による各乾燥期間の細孔分布

図-5.7 各水準の水銀圧入法による各乾燥期間の細孔容積の変化

図-5.6, および図-5.7 より,水銀圧入法において測定した全体的な空隙構造(測定下限~300nm)は、同一粒径の水準で比較すると、BF3.4 の方が BF3.7 と比べて細孔直径 30nm 以上の乾燥収縮に影響を与えにくい空隙が多いことが分かった。BF3.7 の細孔直径のピーク は約 50nm に対し、BF3.4 の細孔直径のピークは約 90nm と、BF3.4 の高炉スラグ微粉末を 用いた硬化体の細孔直径は、BF3.7 より大きい細孔が多いことが分かった。また、BF3.4 は、 BF3.7 と比べて、30nm 以上の細孔直径の割合が多く、30nm より小さい細孔直径の割合が 少ない。乾燥収縮の変化量の大きい乾燥期間 0 日から 7 日までの 10nm 以下の細孔容積の 変化も,BF3.7 はほとんど変化していないのに対し,BF3.4 は 10nm 以下の割合も少なく, 若干ながら減少し,その割合も BF3.7 の半分程度である。

一方,粒径の異なる水準で比較すると,BF1.7 および BF3.7 ともに同じような細孔径分 布となり,細孔直径 30nm 未満の乾燥収縮に影響を与えると考えらえる空隙は,BF1.7 の方 が多いことが分かった。

つぎに,各水準の窒素ガス吸着法による各乾燥期間の細孔分布を図-5.8 に示す。窒素ガス吸着法では,細孔直径 1.3nm~30nm を対象として測定を行ったが, 3nm 以下の細孔直径は確認されなかった。

図-5.8 各水準の窒素ガス吸着法による各乾燥期間の細孔分布

同一粒径の水準で比較すると、乾燥期間0日において、BF3.7 では約3.8nm、BF3.4 では 約4.3nm が最小直径として確認できた。BF3.7 は、乾燥期間が経過しても、最小直径の立 ち上がり位置が3.8nm 付近からほとんど変化なく、空隙が埋められている。一方で、BF3.4 は乾燥期間の経過とともに、最小直径の立ち上がり位置は、大きい直径へと変化し、乾燥 期間の経過とともに最小直径である4nm 付近の空隙が埋められていることが分かる。また、 これら細孔径分布の変化は、セメントの水和反応の進行および水分の蒸発(乾燥)の組み 合わせによるものであるが、30nm 以下の空隙の割合もBF3.7 と比べて BF3.4 は半分程度 であり、毛細管張力の大きい30nm 以下の空隙が、各乾燥期間においてもBF3.7 の方がBF3.4 と比べて多い。ここで、水分の蒸発に着目すると、水分の蒸発は細孔直径の大きい径から 蒸発し、その大きい径からの蒸発がなくなると、より小さい細孔からの蒸発が生じると考 えられる。これは、既往の研究 ⁶⁾の水分の蒸発はより大きな細孔から順次起こり、より小 さい細孔へ進み、毛細管張力も大きくなると一致する。**図-5.4** に示した質量変化率の結果 からも、BF3.4 は BF3.7 と比べて、質量変化率(水分の蒸発)が大きいため、収縮に寄与 しにくい細孔からの蒸発が BF3.4 の方が多かったと考えられる。Kelvin 式による相対湿度 60%では乾燥する細孔直径は約2nm までになることから、BF3.7 の最小直径付近の細孔直 径からも水は蒸発していると考えられる。

ここで、毛細管水中に発生する毛細管張力は、5.2 式に示す Young-Laplace 式により与えられ、この 5.2 式から計算した毛細管張力と細孔直径との関係を図-5.9 に示す。

$$\Delta P = 2 \times \gamma \div r$$
 [5.2]
ここに、
 ΔP :毛細管張力 (N/mm²)
 γ :水の表面張力 (N/mm) (20°Cで 0.07275)
 r :毛細管の半径 (m)

を意味する。

図-5.9 より,細孔直径が 30~100nm の範囲の傾きは 0.1~0.2 に対し,20~30nm の範囲 の傾きは 0.5,10~20nm の範囲の傾きは 1.4 であり,毛細管張力は,細孔直径が 30nm 付 近から小さくなるにつれて緩やかに大きくなっている。とくに,10nm 付近から急激に大き くなり,既往の研究⁶⁾の乾燥収縮の寄与率の大きいとされる細孔直径と一致する。

一方,粒径の異なる水準で比較すると,乾燥期間0日において,BF3.7 では約3.8nm, BF1.7 では約4.1nm が最小直径として確認できた。BF3.7 の方が,最小直径は小さいが, 乾燥期間の経過による,最小直径の立ち上がり位置は,BF1.7 およびBF3.7 はほとんど変 化がなく,空隙が埋められている。BF1.7 は,BF3.7 と同じような細孔径分布となり,細孔 直径30nm 未満の乾燥収縮に影響を与えると考えられる空隙は,むしろBF1.7 の方が多い ことが分かった。しかしながら,図-5.4 に示した乾燥収縮からは,BF1.7 の方がBF3.7 よ り乾燥収縮は小さくなっている。これは、粒径が同程度の BF3.7 および BF3.4 の細孔径と 水分の蒸発の他に、乾燥収縮を小さくする要因があると考えられる。

ここで, 乾燥収縮の変化量の大きい乾燥期間 0~7 日までの BF3.7 および BF1.7 の窒素ガ ス吸着における吸着等温線の変化を図-5.10 に示す。

図-5.10 BF3.7 および BF1.7 の窒素ガス吸着における吸着等温線の変化

ある圧力Pにおける窒素ガスが固体表面に吸着および脱着するときのガス吸着量と吸着/ 脱着の等温線であり、Langmuirの局存性単分子吸着理論⁷⁾を拡張し、吸着過程を動力学的 に解析した BET 理論^{8),9)}を適用したものである。P/P₀=0.99 は 200nm, 0.95 で 35nm, 0.80 で 10nm, 0.40 で 2nm 程度の細孔直径であり、ヒステリシスの面積が大きいほど、窒 素ガスは脱着しにくいことを表していることから、ヒステリシスの面積が大きいほど、水 分の蒸発がしにくい細孔構造であると考えられる。

図-5.10より,乾燥期間が経過すると、BF1.7 およびBF3.7 ともに、ヒステリシスの吸着 量は低下しており、特にP/P₀=0.9以上の大きい細孔の部分から空隙が埋められていること が分かる。また、BF1.7 の方が、マクロ孔(50nm以上)からメソポア孔(2~50nm)の全 体的な空隙が多い状態で変化している。ここで、表-5.5 に、図-5.10 に示した BF1.7 および BF3.7 のヒステリシスの面積を示す。表-5.5 より、BF1.7 の方が、BF3.7 と比べてヒステリ シスの面積が大きいため、水分の蒸発がしにくい細孔構造であることが判断できる。また、 乾燥期間の経過とともに、BF3.7 のヒステリシスの面積は減少しているのに対し、BF1.7 は ヒステリシスの面積は減少していない。つまり、BF1.7 は、乾燥期間が経過しても、水分の 蒸発はしにくい、BF3.7 は細孔が埋められ、水分の蒸発が大きいと考えられる。これは、図 -5.5 に示した質量変化率の関係と一致し、BF1.7 は、BF3.7 よりも質量変化率は小さかった。 よって、BF1.7 は、乾燥収縮に影響を与える毛細管張力が大きい 30nm 以下の空隙の割合が 多いが、水分の蒸発がしにくい構造であるため、BF3.7 より乾燥収縮が改善できたと考えら れる。このような構造となった要因としては、BET 比表面積が BF3.7 と同等以下、あるい は、BF1.7 の方の粒径が小さいため、組織構造の緻密さの向上、圧縮強度や高炉スラグ反応 率が大きいことによる組織の毛細管張力に対する抵抗性の向上などによると考えられる。

水準 No.	ヒステリシスの面積							
(スラグ種類)	日 0	1日	3日	7日	28日			
BF3.7	4.78	5.63	5.56	3.72	1.82			
BF1.7	6.61	6.63	6.46	5.57	2.06			

表-5.5 BF1.7 および BF3.7 の各乾燥期間におけるヒステリシスの面積

以上のことより, BF3.4 および BF3.7 の結果から,同一粒径でも BET 比表面積の小さい 高炉スラグ微粉末を用いることで,乾燥収縮に影響を与える 30nm 以下の空隙の割合が減 少することが分かった。また,BF3.4 および BF1.7 の結果から,粒径が小さくても,BET 比表面積が同程度であれば,水分の蒸発しにくい細孔組織となることが分かった。

BF3.7, BF1.7, および BF3.4 の順で BET 比表面積は小さく, 乾燥収縮も BF3.7, BF1.7, および BF3.4 の順で低減できたため, 粒径が小さくても, BET 比表面積の小さい高炉スラ グ微粉末の細孔構造とすることで, 乾燥収縮は低減できることが分かった。

5.3 高炉スラグ微粉末の細孔構造が硬化体の収縮に及ぼす影響の検証

5.3.1 使用材料

本節で使用した材料を表-5.5 に示す。使用材料は、モルタルにおいて実験したため、前 節で使用した材料に、細骨材である乾燥珪砂(絶乾密度:2.63g/cm³、吸水率:1.22%、粗粒 率:2.95)を追加した。

密度 強熱減量 D_{50} 名称 材料 記号 (g/cm_3) (μm) (%)W -練混ぜ水 水道水 1.00-普通ポルトランドセメント セメント Ν 3.16 1.03 17.1 BF3.7 3.66 0.55 シングルミクロン В BF3.4 3.43 混和材 2.91 0.56 高炉スラグ微粉末 BF1.7 1.73 0.59 細骨材 乾燥珪砂 S 2.63 --高性能 AE 減水剤 SP ポリカルボン酸エーテル系 混和剤 DF ポリアルキレングリコール誘導体 消泡剤

表-5.5 使用材料

5.3.2 実験水準と練り混ぜ方法

本節では,前節で得られた高炉スラグ微粉末の細孔構造の違いによる乾燥収縮低減のメ カニズムの検証をモルタルレベルで実施した。前節同様に,シングルミクロン高炉スラグ 微粉末をそれぞれ普通ポルトランドセメントに対して質量比で 50%内割り置換した 3 水準 とした。

モルタルの配合は,**第3章**と同様に,JASS 5M-701「高強度コンクリート用セメントの品 質基準」を参考とし,水結合材比は 30%とした。

練り混ぜは、前節と同様とし、JASS 5M-701 を参考とした。結合材であるセメントとシ ングルミクロン高炉スラグ微粉末は、練り混ぜ時に別々に計量して、練り混ぜ時に混合し た。練り混ぜは、「空練 30 秒 → 注水 → 2 分練混ぜ → 20 秒掻き落とし → 2 分 40 秒練混 ぜ → 5 分静置 → 30 秒練混ぜ」とした。ミキサは、10L 容積のモルタルミキサを用い、練 り混ぜ容量 2L とし、回転数 139rpm(低速)にて行った。

98

5.3.3 実験項目と評価方法

(1) モルタルのフレッシュ性状

0 打フローと空気量の評価は、前節と同様に JASS 5M-701 に準拠して測定を行った。0 打フローは 260±10mm となるようにポリカルボン酸エーテル系の SP 添加量によって調整 した。空気量は 3.0%以下を目標とした。

(2) 乾燥収縮と質量変化率

乾燥収縮の評価は,「**3章の3.5.4 乾燥収縮**」と同様に JIS A 1129-3 に準拠して 測定を行った。

なお,乾燥収縮および質量変化率の測定は,前節の乾燥期間と同様に,0,1,3,7,お よび28日において実施した。

(3) 細孔径分布

本節での細孔径分布の測定は,前節と同様に,窒素ガス吸着法と水銀圧入法の2種類の 手法を用いた。

なお,乾燥収縮,および質量変化率の測定は,乾燥期間1,3,7,および28日において 実施し,測定水準は,BF1.7およびBF3.7の2水準とした。前節の結果より,BF3.4は,毛 細管張力の小さい領域の細孔径の割合が多く,水分の蒸発が大きく,乾燥収縮も低減でき たことが明確であったが,BF1.7およびBF3.7の水準は,複雑な要因により,乾燥収縮が 低減できたと考えられた。そのため,モルタルにおいても細孔構造が同様な傾向となるの か確認するため,BF1.7,およびBF3.7の水準のみ細孔径分布の測定を実施した。

5.2.4 実験結果および考察

(1) モルタルのフレッシュ性状

フレッシュ性状の試験結果を表-5.6 に示す。BF3.4, BF1.7, および BF3.7 の順で, 同一 フローとするための SP 添加率は小さくなった。これは, 前節のセメントペーストと同様の 傾向となった。これは, BF3.7, BF1.7, および BF3.4 の順で BET 比表面積が大きいこと から, 高炉スラグ微粉末の細孔構造 (BET 比表面積) に起因して, BET 比表面積の小さい 高炉スラグ微粉末の方が, その粒子表面への SP の吸着量が低くなったと考えられる。

水準 No.	SP/B 0打フロー		練上り温度	空気量						
(スラグ種類)	(%) (mm)		(°C)	(%)						
BF3.7	1.00	260	23.6	1.9						
BF3.4	0.70	262	22.5	1.8						
BF1.7	0.85	260	23.4	1.5						

表-5.6 フレッシュ性状

(2) 乾燥収縮と質量変化率

各水準の乾燥収縮を図-5.11 に、質量変化率を図-5.12 に示す。 モルタルにおいても、乾燥収縮および質量変化率は、前節と同様な傾向となった。

図-5.11 各水準の乾燥収縮

(3) 細孔径分布

BF1.7 および BF3.7 の水銀圧入法による各乾燥期間の細孔分布を図-5.13 に示す。

図-5.13 BF1.7 および BF3.7 の水銀圧入法による各乾燥期間の細孔分布

図-5.13 より,水銀圧入法において測定した全体的な空隙構造(測定下限~300nm)は, BF1.7,および BF3.7 ともに同じような細孔径分布となり,前節同様に,顕著な違いが確認 できなかった。 つぎに,各水準の窒素ガス吸着法による各乾燥期間の細孔分布を図-5.14 に示す。窒素ガス吸着法では,細孔直径 1.3nm~30nm を対象として測定を行ったが, 3nm 以下の細孔直径は確認されなかった。

乾燥期間1日において,BF3.7 では約3.5nm,BF1.7 では約3.8nm が最小直径として確認できた。前節の結果と同様に,BF3.7 の方が,最小直径は小さいが,乾燥期間の経過による,最小直径の立ち上がり位置は,BF1.7 およびBF3.7 はほとんど変化がなく,空隙が埋められている。また,BF1.7 は,BF3.7 と同じような細孔径分布となり,細孔直径30nm 未満の乾燥収縮に影響を与えると考えらえる空隙は,BF1.7 の方が多いことが分かった。

図-5.14 BF1.7 および BF3.7 の窒素ガス吸着法による各乾燥期間の細孔分布

ここで,前節同様に,BF3.7,およびBF1.7 の窒素ガス吸着における吸着等温線の変化を 図-5.15 に示す。

図-5.15 BF3.7 および BF1.7 の窒素ガス吸着における吸着等温線の変化

図-5.15 より,乾燥期間が経過すると,BF1.7 およびBF3.7 ともに、ヒステリシスの吸着 量は低下しており,特にP/P₀=0.9 以上の大きい細孔の部分から空隙が埋められていること が分かる。また,BF1.7 の方が、マクロ孔 (50nm 以上)からメソポア孔 (2~50nm)の全 体的な空隙が多い状態で変化している。これらは、前節と同様の傾向であった。表-5.7 に、 図-5.15 に示した BF1.7 および BF3.7 のヒステリシスの面積を示す。表-5.7 より、BF1.7 の 方が、BF3.7 と比べてヒステリシスの面積が大きいため、水分の蒸発がしにくい細孔構造で あることが判断できる。また、乾燥期間の経過とともに、BF3.7 のヒステリシスの面積は減 少しているのに対し、BF1.7 は、ヒステリシスの面積の減少は小さい。つまり、BF1.7 は、 乾燥期間が経過しても、水分の蒸発はしにくい。一方で、BF3.7 は細孔が埋められ、水分の 蒸発が大きいと考えられる。これは、図-5.12 に示したモルタルにおける質量変化率の関係 とも一致し、BF1.7 は、BF3.7 よりも質量変化率は小さかった。よって、BF1.7 は、乾燥収 縮に影響を与える毛細管張力が大きい 30nm 以下の空隙の割合が多いが、水分の蒸発がし にくい構造であることが、モルタルにおいても検証することができた。そのため、BF3.7 より、BF1.7 の方の乾燥収縮が改善できたと考えられる。

水準 No.	ヒステリシスの面積							
(スラグ種類)	1日	3日	7日	28日				
BF3.7	2.72	2.18	1.86	1.17				
BF1.7	2.91	2.73	2.26	0.97				

表-5.7 BF1.7 および BF3.7 の各乾燥期間におけるヒステリシスの面積

以上のことより, 粒径が小さくても, BET 比表面積の小さい高炉スラグ微粉末の細孔構 造とすることで, 乾燥収縮は低減できる。

5.4 まとめ

5.2節では、粒径が同程度でも BET 比表面積(細孔構造)の異なる、または BET 比表面積(細孔構造)が同程度でも粒径の異なるシングルミクロンの高炉スラグ微粉末を試作し、乾燥収縮に及ぼす高炉スラグ微粉末の影響を、硬化体の細孔径分布に着目して確認した結果、以下の知見を得た。

- (1) 同一粒径の場合, BET 比表面積の小さい高炉スラグ微粉末である BF3.4 を用いた方 が,乾燥収縮は小さくなり,質量変化率(水分の蒸発)は大きくなる。
- (2) 同一粒径の場合, BET 比表面積の異なる高炉スラグ微粉末は, 硬化体の細孔構造(細 孔径分布)に大きく影響を与え, BET 比表面積の小さい高炉スラグ微粉末を用いた 方が, 乾燥収縮への寄与率が低いとされる 30nm より大きい細孔容積の割合が多く なる。
- (3) 同一粒径の場合,既往の研究と同様に毛細管張力の影響により,30nm 以下の細孔 直径の割合が多い硬化体の方が,硬化体の乾燥収縮は大きくなる。
- (4) BET 比表面積が同程度の場合,粒径が小さい高炉スラグ微粉末の方が,30nm 以下の細孔径分布は多くなる。
- (5) BET 比表面積が同程度の場合,粒径の小さい高炉スラグ微粉末の方が,質量変化率 は小さく,乾燥収縮も小さくなる。
- (6) BET 比表面積が同程度の場合,粒径の小さい高炉スラグ微粉末の方が,乾燥収縮に 影響を与える毛細管張力が大きい 30nm 以下の空隙の割合が多いが,水分の蒸発が しにくい構造であるため,乾燥収縮が改善できる。これは,ペースト組織構造の緻 密さの向上,圧縮強度や高炉スラグ反応率が大きいことによる組織の毛細管張力に 対する抵抗性の向上などによる。
- (7) BET 比表面積は小さい高炉スラグ微粉末ほど,乾燥収縮も低減できたため,粒径が 小さくても,BET 比表面積の小さい高炉スラグ微粉末の細孔構造とすることで,乾 燥収縮は低減できる。

5.3節では,高炉スラグ微粉末の細孔構造の違いによる乾燥収縮低減のメカニズムの検 証をモルタルレベルで実験を行った結果,以下の知見を得た。

- (8) 同一粒径の場合、セメントペースト同様に、BET 比表面積の小さい高炉スラグ微粉 末である BF3.4 を用いた方が、乾燥収縮は小さくなり、質量変化率(水分の蒸発) は大きくなる。
- (9) BET 比表面積が同程度の場合,セメントペースト同様に,粒径の小さい高炉スラグ 微粉末の方が,質量変化率は小さく,乾燥収縮も小さくなる。
- (10) BET 比表面積が同程度の場合,セメントペースト同様に,粒径の小さい高炉スラグ

微粉末の方が,乾燥収縮に影響を与える毛細管張力が大きい 30nm 以下の空隙の割 合が多いが,水分の蒸発がしにくい構造であるため,乾燥収縮が改善できる。

(11) BET 比表面積は小さい高炉スラグ微粉末ほど、セメントペースト同様に、乾燥収縮 も低減できたため、粒径が小さくても、BET 比表面積の小さい高炉スラグ微粉末の 細孔構造とすることで、乾燥収縮は低減できる。

参考文献

- 1) 李長江ほか:セメントペーストの細孔構造および圧縮強度に及ぼす高炉スラグ微粉末の 影響,日本建築学会構造論文集, No.506, pp.1-6, 1998
- 2) 社団法人日本材料学会:コンクリート混和材料ハンドブック, pp.328-330, 2004
- 3) 羽原俊祐ほか:高炉セメント及び水和高炉セメントペースト中の未反応高炉スラグの定 量, セメント・コンクリート論文集, No.64, pp.575-581, 2010
- 4) 李長江ほか: 高炉スラグ微粉末を用いたモルタルの細孔構造と乾燥収縮, コンクリート 工学年次論文報告集, Vol.20, No.2, pp.187-192, 1998
- A. Bentur, et al : Influence of Microstructure on the Creep and Drying Shrinkage of Calium Silicate Pastes, Proceeding of 7th Int. Cong. Chem. Cem. Paris, Vol.III, pp.VI-26-31, 1980
- 6) 郭度連ほか:コンクリートの乾燥収縮に及ぼす水セメント比および養生条件の影響、コンクリート工学年次論文報告集, Vol.25, No.1, pp.743-748, 2003
- 7) I.Langmuir : J.Am.Chem.Soc., Vol.40, pp.1361, 1918
- 8) S.Brunauer, et al : J.Am.Chem.Soc., Vol.60, pp.309, 1938
- 9)野呂純二ほか:解説 比表面積,細孔径分布,粒度分布測定,日本分析化学会,ぶんせき,pp.349-355,2009.7

第6章

シングルミクロン高炉スラグ微粉末の

実モルタル製品への適用

6.	1	概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・107
6.	2	シングルミクロン高炉スラグ微粉末のモルタル注入材料への適用・・・・・108
6.	3	シングルミクロン高炉スラグ微粉末の耐硫酸性補修モルタル材への適用・・・133
6.	4	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・150

6.1 概論

本研究において開発した D₅₀=1.5±0.5µm のシングルミクロンの粒径を有する高炉スラ グ微粉末を用いることで,製品アプリケーションとして,おもに「初期強度の向上」,「乾 燥収縮の低減」,「ダイラタンシー性状(作業性)の改善」などの効果を得られることを把 握した。そのため,実モルタル製品において,シングルミクロン高炉スラグ微粉末を用い た場合の実モルタル製品の性能向上が可能と考えられる特性を検証する必要がある。同時 に、実モルタル製品の課題の解決の可能性の検証についても同時に実施することとし、実 モルタル製品の課題と解決手法を図-6.1 に示す。

よって、本章では、シングルミクロン高炉スラグ微粉末を用いたモルタル製品を試製し、 実モルタル製品への適用の可能性と同時に、従来の実モルタル製品の課題の解決と性能向 上について検証を行った。シングルミクロン高炉スラグ微粉末のモルタル注入材料への適 用検証を6.2に、シングルミクロン高炉スラグ微粉末の耐硫酸性補修モルタル材料(左 官モルタル塗り材料)への適用検証を6.3に、本章のまとめを6.4に記述した。

モルタル注入材料

<u>耐硫酸性補修モルタル材料</u>

工期短縮+温度ひび割れの低減の両立

6.2 シングルミクロン高炉スラグ微粉末のモルタル注入材料への適用

6. 2. 1 はじめに

道路橋の壁高欄は、場所打ちコンクリートで構築されることが主流であった。しかし、 近年では、安定した品質、耐久性の向上、製作時や施工時の省力化、工期短縮などの観点 からプレキャスト製の壁高欄も製作されるようになってきた¹⁾。このプレキャスト壁高欄と 床板を接合する際には、一般的にモルタル注入材料が使用される。モルタル注入材料の品 質の要求性能は、部材の一体化、鉄筋保護を目的とした遮塩性および工期短縮を目的とし た早期強度を得ることである。また、ポンプでの注入時の施工性が良好であることが要求 される。さらに、プレキャスト壁高欄と床板を接合する際のモルタル注入部の厚さは 30~ 50cm と比較的大きく、コンクリートよりも単位結合材量が多いので硬化時のモルタルの最 高温度が高くなるため温度ひび割れの発生確率が大きくなりやすい。

一般的に、モルタル注入材料に早期強度を付与させるために早強ポルトランドセメント が用いられる。早強ポルトランドセメントが用いられた場合、混合セメントと比較して温 度ひび割れの発生や遮塩性が低いことが知られている。そのため、温度ひび割れ対策や遮 塩性向上を目的として、JISA 6206 に準拠した高炉スラグ微粉末 3000 を早強ポルトランド セメントの一部に混和したモルタル注入材料が使用されている。しかしながら、高炉スラ グ微粉末 3000 を用いることで、初期強度が低下し、モルタル注入後の脱型まで3日程度の 期間が必要となる。早強ポルトランドセメントを普通ポルトランドセメントに代替するこ とが温度ひび割れ対策に有効であるが、混和材料の添加と同様に初期強度が小さくなり工 期短縮の観点からも課題が残る。したがって、モルタル注入材料に初期強度の増加による 工期短縮および温度ひび割れの低減の両立が求められる。

そこで、高炉スラグ微粉末 3000 と従来のモルタル注入材料に使用されていないシングル ミクロン高炉スラグ微粉末を組み合わせた新たなモルタル注入材料の適用の可能性につい て各種実験を行った。最初に、室内レベルで、シングルミクロン高炉スラグ微粉末を用い たモルタル注入材料の各種物性と従来用いられているモルタル注入材料と比較を行った。 つぎに、実構造物を模擬した実験を行い、シングルミクロン高炉スラグ微粉末を用いたモ ルタル注入材料を実機レベルでの練混ぜミキサによる練混ぜ性能の確認および簡易模擬部 材による最高温度と収縮量の確認を行った。最後に、実部材における注入実験による施工 性の確認を行い、打設から 1 ヵ月後にひび割れの有無の確認を行うことによりシングルミ クロン高炉スラグ微粉末を用いたモルタル注入材料の実用性の検証を行った。

6.2.2 シングルミクロン高炉スラグ微粉末を用いたモルタル注入材料の各種物性

6.2.2.1 使用材料

使用したモルタル注入材料の無機粉体の構成を表-6.1 に示す。汎用モルタル(以下, M1) は、早強ポルトランドセメントと高炉スラグ微粉末 3000 を結合材とした一般的に用いられ ている注入モルタルであり、質量割合で46:54 である。超微粉モルタル1(以下, M2)は 普通ポルトランドセメントと高炉スラグ微粉末 3000 と $D_{50}=1.5\pm0.5\mu m$ の高炉スラグ微粉 末を結合材とした注入モルタルであり、質量割合で33:45:22 である。超微粉モルタル2 (以下, M3)は M2 の $D_{50}=1.5\pm0.5\mu m$ の高炉スラグ微粉末の部分を $D_{50}=3.5\pm0.5\mu m$ の 高炉スラグ微粉末に置換した注入モルタルであり、第3章でシングルミクロン高炉スラグ 微粉末の基本特性の把握を実施した実験と同様に、高炉スラグ微粉末の粒径の違いによる 特性を再検証することを目的に試作した。なお、高性能減水剤などの材料の割合は、M2 お よび M3 とも同一とした。また、M1 より M2 の方が粉体組成を検討している段階で分離傾 向となったため、水材料比(W/P)を M1 より 2.0%低下させ、最適な流動性と分離抵抗性 を向上させた。

名称	記号	構成内容
		()は質量割合
汎用	M1	早強ポルトランドセメント (46)
モルタル	1011	高炉スラグ微粉末 3000(54)
丰刀 泡齿 収 入		普通ポルトランドセメント (33)
迎倾初 王山, 女山, 1	M2	高炉スラグ微粉末 3000(45)
モルダルI		D ₅₀ =1.5±0.5μm のシングルミクロン高炉スラグ微粉末(22)
主刀 244 平人		普通ポルトランドセメント (33)
迎恢初 王业 女 业 2	M3	高炉スラグ微粉末 3000(45)
<i><i><i><i><i><i><i><i></i></i></i></i></i></i></i></i>		D ₅₀ =3.5±0.5μm のシングルミクロン高炉スラグ微粉末(22)

表-6.1 使用したモルタル注入材料の無機粉体の構成

6.2.2.2 実験水準と練り混ぜ方法

実験水準は**表-6.2** に示す 3 水準とした。注入モルタル材料は,事前に,セメント,混和 材,細骨材,および混和剤は,プレミックスを行った。

練り混ぜは、回転数 1300rpm のハンドミキサを用いた。20L 容量の金属製のペール缶に 所定の水を用意し、ハンドミキサで練り混ぜを行いながら注入モルタル材料 25 kg/袋をペ ール缶に投入し、注入モルタル材料の投入完了から 2 分間練混ぜを行った。練上がり量は、 1 回の練り混ぜで約 13L とした。

夕称	휘모	1回の練り港	水材料比							
石仰	口力	水	モルタル材料	W/P (%)						
汎用モルタル	M1	4.5	25.0	18.0						
超微粉モルタル 1	M2	4.0	25.0	16.0						
超微粉モルタル 2	M3	4.0	25.0	16.0						

表-6.2 実験水準

6.2.2.3 実験項目と測定方法

(1) フレッシュ性状

フレッシュ性状の評価は、土木学会コンクリート標準示方書(規準編)「PC グラウトの 流動性試験方法(JSCE-F541)」に準拠して、J₁₄漏斗流下試験を行った。流下時間の目標値 は、NEXCO 試験方法 第3編 コンクリート関係試験方法 試験法 312「無収縮モルタル品 質管理試験方法」の規格値である 8.0±2.0 秒とし、J₁₄漏斗流下試験は、練り混ぜ終了直後 に行った。

以下に, J₁₄漏斗流下試験手順を示す。

- ① J₁₄漏斗を台に鉛直に支持し、水を通して内側を湿らす。
- ② 試料を漏斗内に注ぎ、流出口から少量の試料を流出させる。その後、指で流出口を 押え、試料を漏斗上面まで注ぎ、上面をヘラなどでならす。
- ③ 指を離して試料を流出させ、流出開始から試料が流れきる時(注1)までの流下時間 をストップウォッチで2回測定し、10分の1秒の単位で表し、2回の測定の平均値 をJ₁₄漏斗流下時間とする。
- ④ 漏斗内の試料の残留状態を観察し(注2),ほぼ全量が流出したことを確認する。

(注1):試料の流れが急激に細くなった時を測定終了として良い。

(注2):相当量の試料が塊状で残留している場合は、その試料は不適である。

(2) 圧縮強度

圧縮強度の評価は、「**3章の3.5.3 圧縮強度**」と同様に JASS 5M-701 に準拠して測 定を行った。

圧縮強度の目標値は、NEXCO 試験方法 第3編 コンクリート関係試験方法 試験法 312 「無収縮モルタル品質管理試験方法」の規格値である材齢3日で 25N/mm²以上,材齢28 日で 45N/mm²以上とした。

(3) 遮塩性

遮塩性の評価は,「**3章の3.5.7 遮塩性**」と同様に JSCE-G 572 に準拠して測定を 行った。なお,塩化ナトリウム水溶液の浸せき前の養生は,温度 20±2℃の水中において, 材齢 28 日まで行った。また,20±2℃の濃度 10%塩化ナトリウム水溶液に1 年間浸せきを 行った。

(4) 拘束下での膨張および収縮量(拘束 B 法)

注入モルタル材料は、プレキャスト壁高欄と床板を接合する際に用いられるため、鉄筋 と上下の構造物で拘束されている。そのため、拘束した状態の膨張および収縮量を把握す るため、JIS A 6202「コンクリート用膨張材」の附属書 B (参考)「膨張コンクリートの拘 束膨張および収縮試験方法」に準拠してひずみ量の測定を行った。なお、ひずみ量の測定 は、30分間隔で、材齢14日まで行った。

以下に, 拘束 B 法の試験手順を示す。

- ① 内のり寸法 100×100×400mm のコンクリート供試体成型用型枠に, 拘束棒の中央 部の上下 2 箇所にひずみゲージを貼りつけた拘束 B 法用冶具を設置する。
- ② 型枠に試料を充填し、表面をコテなどで平らにし、上面をラップなどで覆い、水分の蒸発を防ぐ。なお、試験体は2本以上作成する。
- ③ 試料の充填完了後、ただちにデータロガーで膨張および収縮のひずみ量の測定を開始する。
- ④ 温度 20±1℃,湿度 60±2%の環境下で 24 時間気中養生を行う。
- ⑤ 24 時間後,型枠を脱型し,温度 20±1℃,湿度 60±2%の状態で気中養生を行い, 測定を継続する。

(5) 乾燥収縮

乾燥収縮の評価は、「**3章の3.5.4**乾燥収縮」と同様に JIS A 1129-3 に準拠して測 定を行った。

(6) 断熱温度上昇量

注入モルタルの断熱温度上昇量の測定は,**写真-6.1** に示す空気循環式の断熱温度上昇測 定装置(ACM-120HA)²⁾を用いた。測定に用いた試料は4.5Lとし,練上がり直後に試料 を測定装置にセットし,断熱温度の測定を材齢3日まで行った。

以下に、断熱温度上昇量の試験手順を示す。

- ② 円柱型の容器に試料を半分の高さまで充填する。
- ③ 試料投入部に防水処理を施した \$ 0.32mm の T 型熱電対(クラス1)を試料の中央 部となるように設置する。
- ④ 円柱型の容器の上部(約4.5L)まで,熱電対が試料の中央部から動かないように注意しながら,試料を充填する。
- ⑤ 充填完了後、ポリビニールをひもで縛り、試料が漏れないようにする。このとき、 熱電対を切らないように、慎重にひもを縛る。
- ⑥ すみやかに、試料の入った円柱型の容器を、下部にシリコンオイルを投入した断熱 容器(デュワー瓶)に逆さまにセットし、デュワー瓶に蓋を設置する。写真-6.2 に 示すようにデュワー瓶を断熱温度上昇測定試験装置にセットを行い、断熱温度上昇 量の測定を開始する。
- ⑦ 材齢 *t* 日までの断熱温度上昇量 *T*(℃) を以下の 6.1 式によって近似させた。

$$T = \begin{bmatrix} 1 - exp \{ -\alpha (t - t_0) \} \end{bmatrix}$$
[6.1]
ここに、
$$T :
ttble 口 t c の
() M 初日
E ト 日
E () C)$$

T : 材齢 t 日までの断熱温度上昇量(℃)

α : 断熱温度上昇速度に関する係数

t₀ :発熱開始材齢(日)

t :測定を継続した材齢(日)

を意味する。

写真-6.1 断熱温度上昇測定装置

写真-6.2 デュワー瓶の設置状況(断熱温度上昇測定装置の内部)

(7) 耐凍害抵抗性(凍結融解試験)

注入モルタルの耐凍害抵抗性は,JISA1148「コンクリートの凍結融解試験方法(A法: 水中凍結融解試験方法)」に準拠して,測定を行った。試験は,材齢28日まで温度20±2℃ において水中養生を行った供試体のほかに,材齢28日まで温度20±1℃,湿度60±2℃に おいて気中養生を行った2種類の条件で作成した供試体を用いた。なお,凍結融解試験は, 相対動弾性係数が60%を下回るか,300サイクルに達した時点で終了とした。

以下に、凍結融解試験(A法)の試験手順を示す。

- ① 30 サイクルごとに、融解行程終了直後に、試験槽から 100×100×400mm の供試 体を取り出す。
- ② 取り出した供試体は、ブラシなどでその表面を軽くこすり、水洗い後、表面の水を ウエスなどで拭き取り、速やかに供試体のたわみ振動の一次共鳴振動数および質量 を測定する。この時、測定していない供試体は、常に湿潤状態にしておく。
- ③ 供試体に新たなひび割れ、または破損が生じている場合には、これらの記録を行い、 試験槽に戻す。供試体を投入するゴム製の容器はよくすすぎ、新鮮な水を入れなけ ればならない。供試体を試験槽に戻す場合、試験体の上下を入れ替え、試験槽内に 定位置を定めずに戻す。
- ④ 相対動弾性係数が 60%を下回るか, 300 サイクルに達した時点で, その試験体のサイクルは終了とする。
- ⑤ 相対動弾性係数は 6.2 式,耐久性指数は 6.3 式,および質量減少率は 6.4 式により

算出し,四捨五入によって整数に丸めた。

$$P_n = \{ (F_n)^2 / (F_0)^2 \times 100 \}$$

$$[6.2]$$

$$\zeta \subset V \zeta,$$

 P_n
 : n サイクル後の相対動弾性係数(%)

 F_n
 : n サイクル後の一次共鳴振動数(Hz)

 F_0 : 0 サイクルにおける一次共鳴振動数(Hz)を意味する。

$$DF = P \times N/M$$
[6.3]

ここに,

- DF : 耐久性指数
 - *P* : n サイクル時の相対動弾性係数(%)
 - N :相対動弾性係数が 60%になるサイクル数,または 300 サイ クル中のいずれか小さいもの
 - M : 300 サイクル

を意味する。

$$W_n = (w_0 - w_n) / w_0$$
 [6.4]

ここに,

- *W_n* : n サイクル後の質量減少率(%)
- *w_n* : n サイクル後の供試体の質量 (g)

 w_0 :0 サイクルにおける供試体の質量 (g)

を意味する。

6.2.2.4 実験結果および考察

(1) フレッシュ性状

フレッシュ性状を表-6.3 に示す。J₁₄漏斗流下時間は, M1 と M2 は目標値の範囲内となっ たが, M3 は 18.2 秒と目標範囲外となった。M2 より M3 の J₁₄漏斗流下時間が長い理由は, M2 に用いた高炉スラグ微粉末より M3 に用いた高炉スラグ微粉末の粒径が大きく, M2 よ り M3 の粉体の充填性が減少することにより M3 の流動性が低下したためと考えられる。

			• • •				
訂早	J14漏斗流下時間	練上がり温度		圧縮強	崔度(N/r	nm²)	
百四万	(秒)	(°C)	1日	2日	3日	7日	28 日
M1	8.1	20.1	17.6	24.3	31.8	40.4	54.0
M2	7.4	19.8	43.6	57.5	66.8	75.1	79.5
M3	18.2	20.5	20.4	28.9	48.9	62.9	71.3

表-6.3 フレッシュ性状および圧縮強度

(2) 圧縮強度

圧縮強度を表-6.3 および図-6.2 に示す。圧縮強度は、M1 が材齢3日、M2 が材齢1日、M3 が材齢2日で目標強度25N/mm²を満足した。すべての材齢において、M2 および M3 は、M1 より強度が大きい値となった。シングルミクロン高炉スラグ微粉末を用いたとき、ポルトランドセメントの種類を早強ポルトランドセメントから普通ポルトランドセメント に変更しても、強度発現が優れることが分かった。とくに、M2 の材齢1、2日の強度は、M1 または M3 の2 倍以上の強度を示した。M2 に用いた高炉スラグ微粉末は、M3 に用いた高炉スラグ微粉末より初期強度改善効果が大きい高炉スラグ微粉末であることを第3章 で確認したが、第3章と同様の結果を検証することができた。

以上のことより, $D_{50}=1.5\pm0.5\mu m$ のシングルミクロン高炉スラグ微粉末を用いることで、 早強ポルトランドセメントから普通ポルトランドセメントに変更しても、材齢 1 日で目標 強度を満足するため、早期脱型の可能性が大きいことが分かった。そのため、M3 に使用し た $D_{50}=3.5\pm0.5\mu m$ のシングルミクロン高炉スラグ微粉末では、汎用モルタルである M1 のフレッシュ性状、および若材齢での圧縮強度発現性の性能向上ができないため、M3 につ いては、以降の実験項目(3)~(7)は実施しなかった。

116

図-6.2 各水準の圧縮強度

(3) 遮塩性

塩化物イオン濃度および見掛けの拡散係数を表-6.4 に示す。見掛けの拡散係数は、土木 学会基準 JSCE-G 572「浸せきによるコンクリート中の塩化物イオンの見掛けの拡散係数試 験方法(案)」に準拠し、算出した。

M2 の塩化物イオン濃度は、M1 と比べて低い。そのため、遮塩性は M2 の方が良好であ ることが分かった。これは、M2 の方が M1 と比べて、結合材中の高炉スラグ微粉末の割合 が 10%程度多いことと、粒径の小さい高炉スラグ微粉末による緻密性が向上したことによ ると考えられる。

以上のことより,鉄筋の防錆を目的とした遮塩性は,M1よりM2を用いた方が向上する ことが分かった。

訂早	塩化	物イオン濃	見掛けの拡散係数		
記与	ブランク	0~2cm	2~4cm	4~6cm	Dc(cm ² /年)
M1	0.129	14.792	0.194	0.172	0.281
M2	0.088	10.319	0.088	0.088	0.217

表-6.4 塩化物イオン濃度および見掛けの拡散係数

(4) 拘束下での膨張および収縮量(拘束 B 法)

拘束B法のひずみ量を図-6.3 に示す。図-6.3 より,初期の膨張量はM1とM2ともに500μm 程度まで膨張を示した。材齢2日以降に収縮する収縮量は,M2の方が,M1より約140μm 小さい。よって,硬化体としての収縮は,M1よりM2の方が小さくなると推測できるため, 収縮ひび割れに対する抵抗性は,M2の方が優れていると考えられる。

(5) 乾燥収縮

乾燥収縮を図-6.4 に示す。図-6.4 より,乾燥収縮は M2 の方が小さいことが分かった。 また,長期材齢においても,M2 の方が M1 より乾燥収縮は小さい。そのため,乾燥収縮に よるひび割れ発生確率も M2 の方が M1 より小さいと考えられる。

図-6.4 各水準の乾燥収縮

(6) 断熱温度上昇量

断熱温度上昇試験から得られる各係数を表-6.5 に、断熱温度上昇量を図-6.5 に示す。表 -6.5、および図-6.5 より、M1 と M2 の終局断熱温度上昇温度は、ほぼ同じ温度となること が分かった。しかしながら、断熱温度上昇速度に関する係数は、M1 より M2 の方が小さい。 っまり、温度応力によるひび割れ発生確率は、M2 の方が M1 より低減できることが分かっ た。

封耳	終局断熱温度上昇量	断熱温度上昇速度に	発熱開始材齢
記写	T (°C)	関する係数 α	t ₀ (日)
M1	78.948	3.544	0.068
M2	77.809	2.866	0.069

表-6.5 断熱温度上昇試験から得られる各係数

(7) 耐凍害抵抗性(凍結融解試験)

各サイクルにおける相対動弾性係数および耐久性指数を表-6.6 に、各サイクルにおける 質量減少率を表-6.7 に示す。表-6.7 より、M1 および M2 の質量減少率は、大きな差は確認 できなかった。表-6.6 より、前養生として、水中養生を行った場合、M2 は、M1 と同等以 上の耐久性指数となることが分かった。一方で、前養生として、気中養生を行った場合、 M1 はサイクル数 150 で相対動弾性係数が 60%以下となり、30 以下の耐久性指数を示すの に対し、M2 は、水中養生の際と同等以上の耐久性指数となることが分かった。

以上のことより, M2の方が, M1より凍害に対する抵抗性は優れていることが分かった。

記号	記号前養生		各サイクルにおける相対動弾性係数 Pn(%)								DF		
		0	30	60	90	120	150	180	210	240	270	300	
M1	水中	100	96	96	95	94	92	93	94	93	93	93	93
1/11	気中	100	97	93	87	72	52	-	-	-	-	-	28
MO	水中	100	101	101	99	97	97	97	95	95	95	94	94
1012	気中	100	97	97	99	98	99	100	101	98	98	97	97

表-6.6 各サイクルにおける相対動弾性係数および耐久性指数

表-6.7 各サイクルにおける質量減少率

記	前養生	各サイクルにおける質量減少率 W _n (%)										
号		0	30	60	90	120	150	180	210	240	270	300
М	水中	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.3	-0.1	-0.1
1	気中	0.0	-3.1	-3.6	-3.7	-3.5	-3.2	-	-	-	-	-
М	水中	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	気中	0.0	-3.2	-3.6	-3.6	-3.6	-3.5	-3.0	-3.2	-2.8	-2.8	-2.6

6. 2. 2. 5 まとめ

室内レベルで,シングルミクロン高炉スラグ微粉末を用いたモルタル注入材料の各種物 性と従来用いられているモルタル注入材料と比較を行った結果,以下の性状を確認した。

 $D_{50}=1.5\pm0.5\mu m$ のシングルミクロン高炉スラグ微粉末を用いることで,遮塩性が同等以上,初期の強度が大きく,乾燥収縮および温度ひび割れ発生確率が小さく,耐凍害性に優れる注入モルタルに改良できる可能性を見出した。

この結果より,実機レベルでの練混ぜ性能の確認および実際の部材による温度ひび割れ 状況の確認など検証が必要と考えられる。次節以降では現場レベルでの練混ぜ性能の確認 と簡易模擬部材および実部材による温度ひび割れ発生状況の確認を行った。

6.2.3 実機における練り混ぜ性能および簡易模擬部材による温度ひび割れの検証

6.2.3.1 実験概要

注入モルタル材料は,事前にプレミックスされた汎用注入モルタルである M1,および D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を用いた微粉末注入モルタル材料 である M2 の 2 種類を用いた。実際の施工に用いられるミキサでの練混ぜ性能,および簡 易模擬部材による最高温度,収縮量,およびひび割れの発生の確認を行った。

実験に用いた機材を**写真-6.3** に示す。練り混ぜおよび注入は、3.7kW の高速撹拌ミキサ (容量 175L)、3.7kW のスクイズポンプ(最大 3.5MPa)と ϕ 40mm の耐圧ホース 10m を 用いた。

モルタルの練混ぜ容量は約78L(25kg/袋×6袋を1バッチ)とし,90秒間の練混ぜを行い,模擬部材1体あたり約0.7m³の流し込み量,流し込み速度12L/minとした。

簡易模擬部材の型枠および鉄筋の配置状況を**写真-6.4** に示す。模擬部材は、プレキャス ト壁高欄の一種である DAK 式プレキャスト壁高欄¹⁾のハンチ部をもたない注入部分を簡易 的に模擬した。**写真-6.4** に示すように、4m(プレキャスト壁高欄の1ブロックの長さ)×幅 0.6m×高さ 0.30m の大きさとし、鉄筋は D16 を使用し、150mm ピッチで配筋した。鉄筋 のかぶりは、左右で 130mm および 60mm、上部で 60mm と、DAK 式プレキャスト壁高欄 の実施工で配置されるかぶりと同条件とした。M1、および M2 をそれぞれ1体作製し、各 種性状の比較を実施した。

写真-6.3 実験に用いた機材

写真-6.4 簡易模擬部材の型枠および鉄筋の配置状況

ここで,実際は注入部分の上部にプレキャスト壁高欄が設置されるが,注入実験時は, 注入部分の上部を解放した。これは,注入部分の上部の拘束がない方が,下部は拘束され, 上部は解放されているため,モルタル注入部の上下の収縮差が大きくなり,温度ひび割れ 発生状況の確認には適していると考えられたためである。

写真-6.5 にモルタルの注入状況を示すように,モルタル注入部の上部が開放しているため, 注入は一箇所からの流し込みとした。注入完了後は,**写真-6.6** に示すように,上面をビニ ールと養生マットとベニア板で養生を行った。また,温度ひび割れのリスクが高い夏期の 施工を想定して,練り上がり温度は 30°Cを目標とし,実験を行った。そのため,M1 およ び M2 を用いた模擬部材の側面の型枠は,流し込みの翌日に脱型を行うことができた。

写真-6.5 模擬部材への充填状況

6.2.3.2 実験項目と測定方法

フレッシュ性状は、J₁₄漏斗流下試験、およびJIS A 1156「フレッシュコンクリートの温 度測定方法」に準拠し、練り上がり温度の測定を実施した。J₁₄漏斗流下時間の目標値は、 8.0±2.0秒となるように練混ぜ水量の調整を行った。また、温度ひび割れのリスクが高い夏 期の施工を想定して、練上がり温度は 30℃を目標とした。

M2 を用いた模擬部材が, M1 を用いた模擬部材と比べて, 低発熱および低収縮であるこ とを確認する目的で, 模擬部材の内部の収縮量と温度の測定を行った。**写真-6.7** に埋め込 みひずみ計(KM100BT)の設置状況を示す。埋め込みひずみ計は, 自己収縮試験に用いる 埋め込みひずみ計を使用した。**写真-6.7** に示すように, 模擬部材の中央部(底面から高さ 150mm, 端部から 300mm の位置) とその中央部の端部から 50mm の位置に設置し, 材齢 100 日まで測定を行った。収縮ひずみは流し込みが完了した時間を基準とした。

圧縮強度は、現場封緘養生とし、大きさは、静弾性係数も同時に測定する目的で、 ϕ 100×200mmの円柱供試体とした。静弾性係数の測定は、JISA1149「コンクリートの静 弾性係数試験方法」に準拠して行い、縦ひずみの検出センサーには、差動トランス式変位 計であるコンプレッソメータ (CM-H)を使用した。測定材齢は、M2の初期の強度発現性 が優れることを把握することを目的とし、1、2、3、5、7、および28日とした。

写真-6.6 模擬部材の養生状況 (ビニール→養生マット→ベニア板)

写真-6.7 模擬部材への埋め込みひずみ計の設置状況(中央部と端部から 50mm の位置)

6.2.3.3 実験結果および考察

フレッシュ性状の実験結果を表-6.8 に, 圧縮強度と静弾性係数を表-6.9 および図-6.6 に, 模擬部材の材齢初期のひずみを図-6.7 に, 模擬部材の材齢 100 日までのひずみを図-6.8 に, 材齢と模擬部材の温度との関係を図-6.9 に, M1 を用いた模擬部材のひび割れ発生状況を写 真-6.8 にそれぞれ示す。なお, 図-6.7 および図-6.8 に示すひずみは, 熱膨張係数 10×10⁻⁶/℃ として温度補正を行った。

		• •			
注入材	水材料比	J ₁₄ 漏斗流下時間	練り上がり温度	外気温	注入圧力
種類	(%)	(秒)	(°C)	(°C)	(MPa)
M1	18.0	7.1	29.5	20.2	0.0
M2	16.0	6.7	29.1	29.3	0.0

表-6.8 フレッシュ性状

注入材	圧縮強度(N/mm ²)				静弹性係数(kN/mm ²)							
種類	1日	2日	3日	5日	7日	28日	1日	2日	3日	5日	7日	28日
M1	19.4	29.2	38.7	43.0	47.1	57.4	14.8	19.4	18.4	20.4	21.5	25.5
M2	54.3	58.4	72.1	76.9	81.0	93.4	25.8	29.4	28.4	30.4	30.1	31.9

表-6.9 圧縮強度(現場封緘養生)と静弾性係数

図-6.9 模擬部材の材齢 100 日までのひずみ

写真-6.8 M1を充填した模擬部材のひび割れ発生状況

フレッシュ性状および練上がり温度は,表-6.6 より,M1,およびM2ともに目標値を満足した。充填時のホース先端部が開放であり,M1,およびM2ともにポンプ注入時の圧力が 0.0MPa であった。したがって,M1,M2の注入作業などの施工性はほぼ同様と考えられるが,実際の実部材におけるM2の注入実験での検証が必要であると考えられる。

現場封緘養生の圧縮強度は、6.2.2.4の表-6.1 に示した 20℃標準水中養生と同様 な傾向となり、M2の初期強度の発現が優れていた。図-6.6より、M1 および M2の圧縮強 度と静弾性係数の関係は、同様であることが分かった。

図-6.7 より,収縮ひずみは,材齢3日で M1 の中央部のひずみが膨張側の約200µm に対し,M2 の中央部のひずみは,収縮側で約-400µm となっている。このことより,M2 の方が,M1 より 600µm 程度収縮が小さくなった。また,材齢12時間あたりまで,M2 の中央のひずみは約200µm まで膨張後,0µm まで収縮しており,M1 の方は,-500µm まで収縮していることから,M2 の方が,初期の温度応力による収縮が小さいことが分かった。

また、図-6.7 に赤丸で示した M1 の中央部のひずみが、材齢 2 日において、200µm 程度 急激に低下している。これは、写真-6.8 に示す材齢 2 日に発生した流し込み位置を 0m とし た場合の長さ方向 1.8m の位置のひび割れにより、ひずみの急激な低下を示したと考えられ る。M1 の長さ方向 1.8m の位置のひび割れによるひずみの急激な低下が発生しなければ、 図-6.9 に示す M1 の模擬部材中央部における材齢 100 日の収縮ひずみは-400µm 程度に相 当したと考えられる。図-6.9 より、M2 を用いた模擬部材の収縮ひずみは、ほぼ 0~200µm 程度で、安定していることが分かった。

図-6.8 に示す模擬部材の最高温度は, M1 に比べて, M2 の方が,中央部で約 13℃,端 部(端部から 50mm の位置)で約 7℃温度がそれぞれ低下した。また,写真-6.8 の M1 を 充填した模擬部材は,長さ方向 1.8m に材齢 2 日,0.8m に材齢 7 日,3.2m に材齢 12 日と 初期の材齢ですべて長手方向に対して垂直方向に貫通ひび割れが発生した。材齢 2 日のひ び割れは,温度下降時の終局に近いため温度応力によるひび割れと考えられる。材齢 7 日 と 12 日においては,収縮が進行していることから外部拘束型の体積変化を含んだひび割れ と考えられる。M2 を用いた模擬部材は材齢 100 日を経過してもひび割れの発生は確認され なかった。

6. 2. 3. 4 まとめ

実機レベルでの練混ぜ性能の確認および実際の模擬部材による温度ひび割れ状況の確認 など検証を行った結果,以下の性状を確認した。

D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を用いた注入モルタル材料は,室 内実験と同様に,材齢初期の圧縮強度発現性に優れ,温度応力によるひび割れ抵抗性に優 れていることを,模擬部材において検証することができた。

この結果より,実部材による注入施工実験を行い,実施の現場での施工性や,実部材で のプレキャスト間詰部の性状を確認する必要があると考えられる。次節では,実際の現場 でのプレキャスト壁高欄の間詰部への施工実験を行い,実工事への適用の可能性について 検証を行った。

6.2.4 実部材における試験施工

6.2.4.1 試験施工の概要

注入モルタル材料は,事前にプレミックスされ, 6.2.2,および6.2.3で検証 した D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を用いた微粉末注入モルタル 材料である M2 を使用した。実際の現場での施工を想定し,ポンプによる注入状況,およ び硬化後の表面の分離(色むら)状態や収縮によるひび割れの発生状況について確認を行 った。

試験施工に用いた機材(車載プラント供給システム)を**写真-6.9** に示す。実部材におけ る試験施工は、生産性向上の観点から、モルタル材および練り混ぜ水の計量から練り混ぜ ミキサおよび注入ポンプを搭載した車載プラント供給システムを使用した。水材料比は 16.0%とし、練り混ぜ容積は 200L/バッチとし、90 秒間の練り混ぜを連続的に行った。注 入は、 ϕ 50mm の注入ホースを約 1.4m 間隔に設置し、注入を行った。

試験施工した実部材を**写真-6.10**に示す。実部材は、1 ブロックの長さ 4mの DAK 式プレ キャスト壁高欄を 2 ブロック設置した長さ 8mの実部材を設置した。

実部材における注入施工実験による施工性の確認を行い,打設から 1 ヵ月後にひび割れ の有無の確認を行うことによりシングルミクロン高炉スラグ微粉末を用いたモルタル注入 材料の実用性の検証を行った。

写真-6.9 試験施工に用いた機材(車載プラント供給システム)

写真-6.10 試験施工した実部材(赤線囲い部がモルタル注入部)

6.2.4.2 実験結果および考察

実験結果を表-6.10 に, モルタル材の充填状況を**写真-6.11** に, 材齢1ヵ月後の充填状況 を**写真-6.12** に示す。

表-6.10 より, 注入したモルタルの J₁₄漏斗流下時間が 8.7 秒, 練上がり温度が 21.5℃であり, システム車による練混ぜが良好にできた。注入圧についても, 0.2~0.4MPa 程度で, 注入開始から 30 分以内で注入を完了することができた。

注入完了の翌日の脱型を行い,モルタル注入部分にモルタルの未充填がないことと,分離などによる色むらがないことを確認した。材齢1ヵ月後に,**写真-6.12**に示すようにモルタル注入部分のひび割れの発生の有無について確認を行ったが,ひび割れは確認されなかった。

以上の結果より、D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を用いたモルタ ル注入材料の実部材での適用の可能性について検証を行うことができた。

水材料比	J14漏斗流下時間	練り上がり温度	外気温	注入圧力	圧縮強度*1)
(%)	(秒)	(°C)	(°C)	(MPa)	(N/mm^2)
16.0	8.7	21.5	20.4	0.2~0.4	51.2

表-6.10 実験結果

※1) 材齢2日の現場封緘養生における圧縮強度

写真-6.11 モルタル材の注入状況

写真-6.12 充填状況(材齢1ヵ月後)

6.3 シングルミクロン高炉スラグ微粉末の耐硫酸性補修モルタル材への適用

6.3.1 はじめに

コンクリートは,酸類,塩類,油類,温泉水などの化学物質により劣化し,浸食される。 劣化要因のひとつである硫酸によるコンクリート構造物の劣化は,化学工場や食品工場の 施設,温泉施設,下水道施設などで発生している。耐硫酸性セメント系材料など特殊セメ ントを使用することは,硫酸によるコンクリート構造物の劣化を緩和する手法のひとつで ある。また,このような構造物の劣化を補修する際には,早期脱型による工期短縮や生産 性向上が求められる。さらに,化学工場では高濃度硫酸に対応できる材料が期待されてい るため,さらなる耐硫酸性の向上が求められる。

既往の研究による耐硫酸性セメント系材料^{3),4)}のひとつは,普通ポルトランドセメント, 高炉スラグ微粉末およびポゾラン系材料から構成されており,耐硫酸性を高めた無機材料 である。この耐硫酸性セメント系材料は,水酸化カルシウムの生成が少なく,硫酸による 二水セッコウの生成を抑制して耐硫酸性向上を目的としている。そのため,二酸化ケイ素 の構成割合が高く,酸化カルシウムが低い特徴を有する。一方で,耐硫酸性セメント系材 料は,ポルトランドセメントが少ないため,初期強度に課題がある。初期強度発現性を改 善するために,水結合材比を小さくすると,粉体量の増加により,ポルトランドセメント の絶対量が増加するため,耐硫酸性が低下してしまう⁵⁾。

そこで、耐硫酸性を維持しながら初期強度発現性を改善するという課題を解決するため、 D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末の適用の可能性について検証を行った。

6.3.2 シングルミクロン高炉スラグ微粉末を用いたモルタル補修材料の各種物性6.3.2.1 使用材料

使用材料を表-6.11 に示す。セメントは、普通ポルトランドセメントを使用した。高炉ス ラグ微粉末 (BF14) は、高炉スラグ微粉末 4000(セッコウなし)を使用した。高炉スラグ 微粉末 (BF1.8) は、 $D_{50}=1.5\mu m \pm 0.5\mu m$ のシングルミクロン高炉スラグ微粉末であり、第 3章より、 $D_{50}=3.5\pm0.5\mu m$ の高炉スラグ微粉末と比べて初期強度発現性が大きく、乾燥収 縮は $D_{50}=3.5\pm0.5\mu m$ の高炉スラグ微粉末と比べて小さい特徴を有する高炉スラグ微粉末 である。

なお, 表-6.11 の D₅₀ はレーザー回折式粒度分布測定器(Microtrac MT3300EX II) によ って測定を行い, シングルミクロンの超微粉末のブレーン比表面積は, 空隙率に依存しな い方法⁶⁾ で測定した。シリカフューム(SF) は JIS A 6207「コンクリート用シリカフュー ム」に準拠したものを用いた。

細骨材には,乾燥珪砂 SS(絶乾密度:2.63g/cm³,吸水率:1.22%,粗粒率:2.95),または乾燥高炉水砕スラグ砂 BS(絶乾密度:2.50g/cm³,吸水率:2.56%,粗粒率:2.76)を使用した。

名称	材料		記号	密度 (g/cm ₃)	D ₅₀ (µm)	ブレーン 比表面積 (cm ² /g)		
練混ぜ水	水道水		W	1.00	-	-		
セメント	普通ポルトランドセメント		N	3.16	15.9	3,350		
	シングルミクロン 高炉スラグ微粉末	В	BF1.8	2.91	1.81	21,600		
他们们	高炉スラグ微粉末 4000		BF14	2.90	14.2	4,450		
	シリカフューム		SF	2.25	0.39	-		
如再开	乾燥珪砂	c	SS	2.63	-	-		
細宜材	乾燥高炉水砕スラグ	3	BS	2.50	-	-		
泪和刘	高性能減水剤		SP	ポリカ	ルボン酸エ-	ーテル系		
混相剤	消泡剤		DF	ポリアルキレングリコール誘導体				

表-6.11 使用材料

6.3.2.2 実験水準と練り混ぜ方法

結合材の構成と化学成分を表-6.12 に示す。TCR1 は、サブミクロンのシリカフュームを 用いることにより、耐硫酸性と強度発現性を改善している結合材であり、汎用的な耐硫酸 性補修モルタル材のベースの特殊セメントとして使用されているセメントである。TCR2 は、本研究で適用の可能性を検証する結合材であり、シリカフュームの部分を D₅₀=1.5± 0.5µm のシングルミクロン高炉スラグ微粉末に置換した構成であり、更なる耐酸性および 初期強度の改良の可能性について検証した。BB は一般的にポルトランドセメントより耐硫 酸性に優れているとされているため、質量比で N:BF14=1:1の割合で試製し、耐硫酸性 補修モルタルの結合材に使用した場合の性能を、TCR1、および TCR2 の比較用に使用した。

記号	結合材の構成(%)				結合材の化学成分(%)				
記方	Ν	BF14	BF1.8	SF	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO	
TCR1	36	48		16	38.6	9.1	1.3	43.4	
TCR2	36	48	16		29.2	11.4	1.3	50.2	
BB	50	50			27.4	10.1	1.7	53.1	

表-6.12 結合材の構成と化学成分

汎用的な耐硫酸性補修モルタル材の基本配合,および実験で比較した水準を表-6.13 に示 す。表-6.13 の TCR1-SS が汎用的な耐硫酸性補修モルタル材の基本配合である。TCR1-SS の結合材を TCR2,または BB へ変更した水準の比較を行った。また,既往研究⁷⁾を参考 とし,細骨材として高炉水砕スラグ砂を用いることで耐硫酸性が向上することが知られて いるため,結合材として TCR2 を用いた水準のみ,珪砂を高炉水砕スラグ砂に置換した場 合の特性も同時に検証を行った。

練り混ぜは,「空練 30 秒 → 注水 → 90 秒練混ぜ → 20 秒掻き落とし → 90 秒練混ぜ」 とした。ミキサは, 3L 容積のモルタルミキサを用い, 練り混ぜ容量 1L とし, 回転数 139rpm (低速)にて行った。

記号 (結合材-細骨材)	W/B (%)	DF/B (%)	SP/B (%)	結合材種類	細骨材種類
TCR1-SS			0.12	TCR1	SS
TCR2-SS	20	0.10	0.05 TCR2	TCR2	SS
TCR2-BS		0.10	0.10	TCR2	BS
BB-SS			0.09	BB	SS

表-6.13 汎用的な耐硫酸性補修モルタル材の基本配合および実験水準

6.3.2.3 実験項目と測定方法

(1) フレッシュ性状

フレッシュ性状の評価方法として、「**3章の3.5.1**フレッシュ性状」と同様な試験 とし、15 打フローと空気量の測定を行った。15 打フローは、JIS R 5201 に準拠し、空気量 の測定は、JIS A 1128 に準拠した。

15 打フローは,フロー値が 170±10mm の範囲となるように,高性能減水剤の添加量に よって調整を行った。空気量は,3.0%以下を目標とし,消泡剤添加率を DN/B=0.10%と 一定とした。

(2) 圧縮強度

圧縮強度の評価は、「**3章の3.5.3 圧縮強度**」と同様に JASS 5M-701 に準拠して測 定を行った。

圧縮強度の目標値は、「下水道コンクリート構造物の防食抑制技術及び防食技術マニュア ル(平成 29 年 12 月)」(以下、「防食技術マニュアル」)の断面修復用モルタルの品質規格 である材齢3日で 25.0N/mm²以上を初期強度の目標値とした。

(3)乾燥収縮

乾燥収縮の評価は、「**3章の3.5.4 乾燥収縮**」と同様に JIS A 1129-3 に準拠して測定を行った。乾燥収縮の脱型は、「防食技術マニュアル」に準拠し、練混ぜ時の注水から 24時間後に脱型した。測定条件は、24時間で脱型時に基長を測定した後、温度 20±1℃、湿度 60±2%の恒温恒湿室で乾燥させた。

乾燥収縮の目標値は、「防食技術マニュアル」の規格値である材齢 28 日で-0.1%以上を 目標値とした。

(4) 耐硫酸性(質量変化と硫酸浸透深さ)

硫酸浸せき試験は、「防食技術マニュアル」を参考とした。このマニュアルでは、 ϕ 75×150mmの大きさの円柱供試体とし、材齢28日まで20℃の水中で養生を行った後に、硫酸浸せき試験を行うとしている。しかし、実際の現場では、モルタル補修工事の養生終了直後から硫酸環境に置かれる可能性が考えられる。そのため、初期養生は材齢3日までと厳しい条件とした。供試体は ϕ 50×100mmの大きさの円柱供試体とした。また、硫酸の濃度は、「防食技術マニュアル」の規格の質量パーセント濃度で5%のほかに、高濃度環境を想定した15%の2水準とした。

以下に, 耐硫酸性の試験手順を示す。

- ② 注水から 24 時間に脱型を行い、材齢 3 日まで温度 20±1℃において水中養生を行う。

- ③ 打設面を研磨後,硫酸水溶液への浸せき前の大きさ(高さと直径)と質量を小数点 第1位まで測定する。
- ④ 所定の容積および濃度の硫酸水溶液に供試体を浸せきさせる。硫酸の浸せきは、供 試体1個に対し,1.3Lの硫酸水溶液とし,浸せき期間は,14 および 91 日間とした。
- ⑤ 硫酸水溶液への浸せき終了後、各濃度の硫酸から取り出した試験体を、完全開放した蛇口の水道水の水圧で全面を均等に1分間洗浄する。その後、表面の水分を拭き取り、速やかに質量測定を行い、質量変化率を6.5 式により算出した。また、硫酸浸透深さの測定は、乾式カッターで供試体中央部を半分に切断した面にフェノールフタレイン1%溶液を噴霧後の呈色域の直径から6.6 式により算出した。

$$M = (m_2 - m_1) / m_1 \times 100$$
 [6.5]
 $z \ iz,$

- M :質量変化率(%)
- *m*₁ : 浸せき前の質量の測定値(g)
- *m*₂ : 浸せき後の質量の測定値(g)

を意味する。

$$X = (x_2 - x_1) / 2$$
 [6.6]

ここに,

Σ

X :硫酸浸透深さ (mm)

- x1 :硫酸浸せき前の供試体の直径 (mm)
- *x*₂ : 硫酸浸せき後の呈色域の直径 (mm)
- を意味する。

なお,「防食技術マニュアル」の規格値である質量変化率は±10%以内,硫酸浸透深さは 3mm 以下を目標値とした。

6.3.2.4 実験結果および考察

(1) フレッシュ性状

フレッシュ性状の試験結果を表-6.14に示す。

細骨材として珪砂を用いた水準の 15 打フローを 170±10mm に調整するための SP 添加 率は, TCR2, BB, および TCR1 の順で少なくなった。ここで, 結合材の強熱減量は, BB が 0.62%, TCR1 が 0.38%, TCR2 が 0.42%であり, 強熱減量と SP 添加率の相関はない。 TCR1 は混和材として BET 比表面積で 18.5m²/g のシリカフュームを用いており, BET 比 表面積で 2.83m²/g のシングルミクロン高炉スラグ微粉末と比べて非常に大きな比表面積で ある。そのため, シリカフューム自体への SP 吸着量が増加したことにより, フロー値を調 整するための SP 添加率が TCR1 を用いた場合, 一番多くなったと考えられる。BB は高炉 スラグ微粉末 4000 とポルトランドセメントから構成させており, シングルミクロンの微粒 子が少なく TCR2 より粉体としての充填性が低いことから流動性を得るために SP を要した と考えられる。

記号	SP/B	15打フロー	空気量
(結合材-細骨材)	(%)	(mm)	(%)
TCR1-SS	0.12	160	1.9
TCR2-SS	0.05	173	1.8
TCR2-BS	0.10	162	1.2
BB-SS	0.09	167	1.8

表-6.14 フレッシュ性状

細骨材として高炉水砕スラグ砂を用いた場合,高炉水砕スラグ砂を用いた方が珪砂より SP 添加率は 0.05%多くなった。これは,高炉水砕スラグ砂の吸水率が 2.56%と,珪砂の 1.22%と比べて大きいため,練り混ぜ水の一部が細骨材である高炉水砕スラグ砂に吸水され たことによると考えられる。

以上の結果から、フレッシュ性状を調整するための SP 添加率は、シングルミクロンの高 炉スラグ超微粉末を用いることで SP 添加率を低減できることが分かった。

(2) 圧縮強度

圧縮強度の試験結果を表-6.15,および図-6.10に示す。

細骨材として珪砂を用いた水準を比較すると、すべての材齢においてシングルミクロン 高炉スラグ微粉末を用いた TCR2-SS の水準の強度発現性が優れていた。また、すべての水 準において材齢3日で目標強度 25.0N/mm²以上を満足している。TCR2-SS および BB-SS の水準は、材齢2日でこの目標強度を満足しており、早期脱型による工期短縮も可能であ る。よって、結合材である TCR2は、ポルトランドセメントが少なくてもシングルミクロ ン高炉スラグ微粉末を用いることにより初期強度を改善できることが分かった。

珪砂と高炉水砕スラグ砂を比較すると,材齢1~7日までは高炉スラグ砂を用いた方の圧 縮強度は大きく,材齢28日では同程度となった。

以上の結果から、シングルミクロン高炉スラグ微粉末を用いることで、材齢 2~7 日程度 の初期強度を改善できることが分かった。

記号	圧縮強度(N/mm ²)								
(結合材-細骨材)	1日	2日	3日	7日	28 日				
TCR1-SS	8.56	20.4	26.8	47.1	83.3				
TCR2-SS	9.27	26.0	42.5	60.4	96.0				
TCR2-BS	13.9	35.4	47.2	65.0	95.5				
BB-SS	8.46	25.6	33.2	53.0	96.8				

表-6.15 圧縮強度

(3) 乾燥収縮

乾燥期間と乾燥収縮との関係を図-6.11に示す。

細骨材として珪砂を用いた場合, TCR1, TCR2, および BB の順で乾燥収縮は大きくなった。混和材置換率として TCR1 と TCR2 は同一であるが, TCR1 はシリカフュームを, TCR2 はシングルミクロン高炉スラグ微粉末を用いた。一般的に, 高炉スラグ微粉末を用いた方が収縮は大きくなるとされているが, シリカフュームを用いるより収縮を低減することができた。これは,本章の実験で用いたシングルミクロン高炉スラグ微粉末が, 第5章

でメカニズムを解明した通り、ブレーン比表面積の割に BET 比表面積が小さい高炉スラグ 微粉末であるためと考えられる。

珪砂と高炉水砕スラグ砂を用いた水準を比べると、高炉水砕スラグ砂を用いた方が乾燥 収縮は小さくなる傾向となった。これは、既往の研究⁷⁾と同様に、珪砂より表面がガラス 質である高炉水砕スラグ砂の BET 比表面積が小さいことによると推測される。

以上の結果から,乾燥期間28日における乾燥収縮は、すべての水準において-0.1%以下 となり目標を満足し,シングルミクロン高炉スラグ微粉末を用いることで,若干改善でき ることが分かった。また,珪砂より高炉水砕スラグ砂を使用した方が,乾燥収縮は1割程 度低減できることも分かった。

図-6.11 乾燥収縮

(4) 耐硫酸性(質量変化と硫酸浸透深さ)

(4.1) 質量変化率

5%硫酸に 14 日間,および 91 日間浸せきした場合の質量変化率を図-6.12 に,15%硫酸 に 14 日間および 91 日間浸せきした場合の質量変化率を図-6.13 に示す。15%硫酸に 14 日 間浸せきさせ,流水洗浄後の供試体の状況を写真-6.13 に,15%硫酸に 91 日間浸せきさせ, 流水洗浄後の供試体の状況を写真-6.14 に示す。目標値である質量変化率±10%以内につい ては,5%硫酸の 14 日間浸せきしたすべての水準と 91 日間浸せきした TCR2-BS と 15%硫 酸の 14 日間浸せきした TCR2-BS の水準で満足することが分かった。

5%硫酸に浸せきした場合,14日間および91日間ともに,BB-SS,TCR1-SS,TCR2-SS, および TCR-BS の順で質量変化率が大きくなった。この傾向は,15%硫酸に浸せきした場 合でも同様であった。また,珪砂より高炉水砕スラグ砂を用いた方が,大幅に質量変化率

図-6.12 14日間および 91日間浸せきした場合の質量変化率(5%硫酸)

図-6.13 14日間および 91日間浸せきした場合の質量変化率(15%硫酸)

ここで,**写真-6.15**は,TCR2-SSおよびTCR-BSの5%硫酸に91日間浸せきした場合の モルタル表層部に硫酸によって形成された二水セッコウの膜の部分を撮影した写真である。 珪砂を用いた場合,表層部の二水セッコウの膜の部分から珪砂が剥がれ落ち,多数の空隙 やひび割れが確認できる。一方で、高炉水砕スラグ砂を用いた場合では、表層部の二水セ ッコウの膜の部分の高炉水砕スラグ砂の剥がれ落ちや空隙が確認できず、緻密な二水セッ コウの膜が形成されていると推測できる。このことから、TCR2-BSの質量変化率が低減で きた理由として、高炉スラグ微粉末と高炉水砕スラグ砂を組み合わせることで表層部の二 水セッコウの膜が緻密 7) となり、この緻密な二水セッコウの膜により、硫酸から保護され ていたことが考えられる。

TCR2-SS TCR2-BS **BB-SS**

写真-6.13 15%硫酸に浸せきさせた供試体の状況(14日間)

写真-6.14 15%硫酸に浸せきさせた供試体の状況(91日間)

高炉水砕スラグ砂を用いた場合、二水セッコウの膜が緻密となるメカニズムについて考 えると、一般的に高炉水砕スラグは非晶質であり、アルカリまたは硫酸塩などの刺激作用 によって水と反応して水和物を生成する潜在水硬性を有する。本章に用いた高炉スラグ砂

も非晶質であるため、セメントの水和反応によって生成された水酸化カルシウムとの反応 により、高炉スラグ砂の表面に C-S-H 硬化体の結晶が生成され、強度的に弱い二水セッコ ウと高炉水砕スラグ砂との界面の付着を向上させ、緻密性が向上したと考えられる。

|写真-6.15||細骨材の異なる水準の表層部の二水セッコウの膜(5%硫酸に 91 日間浸せき)

藤井らの研究⁷⁾によると,水酸化カルシウム水溶液に浸せきさせた高炉スラグ砂の表面 に C-S-H を確認している。珪砂のような反応性の低い骨材の場合には,骨材の周辺に集積 する水酸化カルシウムが硫酸との反応で生成する二水セッコウは,強度的に弱いと考察し ており,本節の結果と一致する。

つぎに、硫酸劣化のメカニズムについて考えると、表層部では、硫酸とセメントの水和 反応によって生成した水酸化カルシウムが反応することにより、二水セッコウを生成する。 一方で、モルタル内部への硫酸イオンの浸透により、セメントとの水和反応で生成したモ ノサルフェートが反応してエトリンガイトが生成される。このエトリンガイトの生成によ り、膨張破壊が生じ、これらの反応を繰り返すことでモルタルが浸食される。ここで、5% 硫酸に91日間浸漬した場合の表面の二水セッコウの膜の部分を回折X線分析装置にて結晶 相の同定を測定した結果を図-6.14 に、TCR2-SS および TCR2-BS の走査型電子顕微鏡 2次 電子像(SEM 画像)を写真-6.16 に示す。図-6.14 より、細骨材として珪砂を用いた場合、 エトリンガイトが同定され、高炉スラグ砂を用いた場合は同定されなかった。また、珪砂 を用いた SEM 画像では、エトリンガイトと推測される針状の生成物が確認できたが、高炉 スラグ砂を用いた SEM 画像からは針状の生成物は確認できなかった。結晶層の同定および SEM 画像の結果から、珪砂を用いた場合は、硫酸との反応でエトリンガイトが生成され、 膨張破壊が生じ、高炉水砕スラグ砂を用いた場合は、エトリンガイトの生成が確認されな かったため、膨張破壊が生じなかったと考えられる。そのため、珪砂を用いた場合の質量 変化が高炉水砕スラグ砂を用いた場合より大きくなったと考えられる。

以上の結果から, 混和材として, D₅₀=1.5±0.5μm のシングルミクロン高炉スラグ微粉末 を用いた場合の質量変化率は, シリカフュームを用いた場合より, 改善できることが分か った。また, 珪砂の代わりに, 高炉水砕スラグ砂を用いることで, 質量変化率を大幅に改 善できることも分かった。

図-6.14 表層部の二水セッコウの膜の XRD(5%硫酸に 91 日間浸せき)

写真-6.16 表層部の二水セッコウの膜の SEM (5%硫酸に 91 日間浸せき)

(4.2) 硫酸浸透深さ

5%硫酸に 14 日間および 91 日間浸せきした場合の硫酸浸透深さを図-6.15 に, 15%硫酸 に 14 日間および 91 日間浸せきした場合の硫酸浸透深さを図-6.16 に示す。

細骨材として珪砂を用いた場合, BB-SS の硫酸浸透深さが一番大きくなった。5%硫酸で

は、TCR2-SS、TCR1-SS の順で硫酸浸透深さが小さい傾向となり、15%硫酸では、TCR2-SS、 TCR1-SS の順で小さい傾向となったが、ほぼ同等の値となった。つぎに、細骨材として高 炉水砕スラグ砂を用いた場合、珪砂と比べ、約3~5割と、大幅に硫酸浸透深さを改善する ことができた。また、目標値である3mm以下は、5%硫酸の14日間浸せきしたすべての水 準と91日間浸せきしたTCR2-BSと、15%硫酸に14日間浸せきしたTCR2-BSの水準で満 足することができた。

図-6.15 14日間および91日間浸せきした場合の硫酸浸透深さ(5%硫酸)

図-6.16 14日間および 91日間浸せきした場合の硫酸浸透深さ(15%硫酸)

ここで、今回の実験のすべての質量変化率と硫酸浸透深さとの関係を図-6.17 に示す。図 -6.17 から両者の関係に相関が確認できるため、高炉水砕スラグ砂を用いた場合の硫酸浸透 深さが改善された理由は、質量変化率の場合と同様と考えられる。

図-6.17 質量変化率と硫酸浸透深さとの関係

室内レベルで、シングルミクロン高炉スラグ微粉末を用いた耐硫酸性モルタル補修材料 の各種物性と従来用いられている耐硫酸性モルタル補修材料と比較を行った結果、以下の 性状を確認した。

 $D_{50}=1.5\pm0.5\mu m$ のシングルミクロン高炉スラグ微粉末を用いることで、初期の強度が大きく、乾燥収縮が小さく、耐硫酸抵抗性に優れるモルタル材料に改良できることを把握した。

しかしながら、この耐硫酸性モルタル補修材料は、実際の施工現場では、コテなどによ る左官工法に用いられる。そのため、コテによる作業性や、厚塗り性などの性状の確認な ど検証が必要と考えられる。次節では、模擬補修部材を用い、現場レベルでのコテ塗り作 業性などを確認する目的で、試験施工を実施した。

6.3.3 シングルミクロン高炉スラグ微粉末を用いたモルタル補修材料の試験施工

6.3.3.1 実験概要

耐硫酸性モルタル補修材料は,事前にプレミックスされた前節と同様に結合材の一部に D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を使用した TCR2-BS を用いた。実際の施工を想定した模擬補修部材を用い,現場レベルでのコテ塗り作業性などを確認する 目的で,試験施工を実施した。

練り混ぜは、回転数 600rpm のハンドミキサを用いた。20L 容量の金属製のペール缶に 4.0kg の水を用意し、ハンドミキサで練り混ぜを行いながら耐硫酸性モルタル補修材料 25 kg/袋をペール缶に投入し、注入モルタル材料の投入完了から3分間練り混ぜを行った。練 り上がり量は、1回の練り混ぜで約13Lとした。

模擬補修部材を写真-6.17 に示す。模擬補修部材は、長さ 2m,幅 450mm,および高さ 450mmのU字溝とした。実際の施工の際は、接着性向上目的で、プライマーを塗布する。 そのため、写真-6.17 に示すように、U字溝の半分にはプライマーを塗布し、残り半分には プライマーを未塗布とした。ここで、プライマーは、汎用的に用いられているアクリル系 ラテックスとし、メーカーの推奨塗布量である 90~100g/m² (原液ベース)塗布した。ま た、補修する部材の劣化状況にもよるが、モルタル材料の1回の施工での塗り厚は、一般 的に 2~10mm であるため、耐硫酸性モルタル補修材料の塗り厚は10mm となるように、U 字溝の周りを 10mm のパッカー材で囲い、施工時のダレおよびコテ塗作業性の確認を実施 した。

写真-6.17 模擬補修部材(U字溝)

6.3.3.2 実験結果

コテ塗り状況を**写真-6.18** に,施工完了後の状況を**写真-6.19** に,翌日のひび割れ発生状況を**写真-6.20** に示す。

コテ塗り作業性は、良好であり、厚さ 10mm でもダレの発生も確認されず、施工完了後 のダレや剥がれは確認されなかった。なお、試験施工現場での 15 打フローの測定ができな かったため、同条件で練り混ぜを事前に行い、15 打フローを確認したところ、162mm であ った。

通常は、施工完了後に、散水や養生シートなどを用い、初期ひび割れの発生を防止する が、短時間でひび割れの発生状況を確認するため、施工完了後の養生は実施しなかった。 その結果、**写真-6.20** に示すように、プライマー未塗布の部分は、ひび割れ幅で 0.2mm 程 度、長さ 150mm 程度のひび割れが発生し、ほかの部分にも、U 字溝の長手方向に対し、同 様なひび割れが 2 ヵ所確認された。しかしながら、プライマー塗布部分には、ひび割れは 確認されなかった。

以上のことより,通常の補修現場と同様に,適切なプライマーによる前処理と,施工完 了後の養生を適切に実施することで,シングルミクロン高炉スラグ微粉末を用いた耐硫酸 性モルタル補修材料は,適用可能と考えられた。

写真-6.18 コテ塗り状況

写真-6.19 施工完了後の状況

写真-6.20 翌日のひび割れ発生状況

6.4 まとめ

6.2節では、従来のモルタル注入材料に使用されていないシングルミクロン高炉スラ グ微粉末を用いたモルタル注入材料の実モルタル製品への適用の検証と同時に、従来のモ ルタル注入材料の課題の解決と性能向上について検証を行った結果、以下の知見を得た。

- (1) 粒径の小さいシングルミクロン高炉スラグ微粉末を用いた方が流動性,および初 期強度発現性は良好となる。
- (2) D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を使用することで、ベースセメントを、早強ポルトランドセメントから普通ポルトランドセメントに変更しても、材齢1日で目標強度を満足し、早期脱型による工期短縮が可能である。
- (3) 従来のモルタル注入材料と比べて、シングルミクロン高炉スラグ微粉末を使用したモルタル注入材料の模擬部材の最高温度は、10℃程度低く、収縮量も小さくなるため、温度ひび割れに対する抵抗性が向上する。
- (4) 従来のモルタル注入材料と同様の作業性とポンプ注入性を有し、実部材への注入 もトラブルの発生もなく、注入ができ、模擬部材および実部材のモルタル注入部 分のひび割れの発生が認められなかった。

6.3節では、従来の耐硫酸性モルタル補修材料に使用されていないシングルミクロン高 炉スラグ微粉末を用いた耐硫酸性モルタル補修材料の実モルタル製品への適用の検証と同 時に、従来の耐硫酸性モルタル補修材料の課題の解決と性能向上について検証を行った結 果、以下の知見を得た。

- (5) D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末を用いた場合,同一フロ ー値を得るための SP 添加率は,大幅に低減できる。
- (6) 材齢 2~7 日程度の初期材齢の圧縮強度は、シングルミクロン高炉スラグ微粉末 を用いることで大幅に改善でき、早期脱型による工期短縮が可能である。
- (7) 乾燥収縮は、シリカフュームよりシングルミクロン高炉スラグ微粉末を用いた方が、若干改善できる。また、細骨材として珪砂より高炉水砕スラグ砂を使用した方が、乾燥収縮は低減できる。
- (8) 耐硫酸性は、シリカフュームよりシングルミクロン高炉スラグ微粉末を使用した 方が、改善できる。さらには、細骨材として高炉水砕スラグ砂を用いた場合、耐 硫酸性が大幅に改善できる。
- (9) 実際の施工を想定した模擬補修部材を用い,現場レベルでのコテ塗り作業性など を確認し,ダレや剥がれは確認されず,良好なコテ塗り作業性が得られる。

参考文献

- 1) 青木圭一ほか:急速施工と高耐久を目指した新たなプレキャスト壁高欄の開発と衝突安 全性能について,橋梁と基礎, Vol.47, pp.41-46, 建設図書, 2013.3
- 2) 萩原清市ほか:長期間に亘る測定で高性能を目指した断熱温度上昇測定装置の開発,熱物性, Vol.23, No.1, pp.21-26, 日本熱物性学会, 2009.2
- 3) 大澤友宏ほか:耐酸性セメント系材料の化学成分による細孔構造と耐硫酸性への影響, コンクリート工学年次論文集, Vol.31, No.1, pp.883-888, 2009
- 二戸信和ほか:生コン供給を可能にする耐酸性セメント系材料の開発、セメント・コン クリート、No.698、pp.45-51、2005
- 5) 蔵重勲ほか:硫酸腐食環境におけるコンクリートの劣化特性, コンクリート工学年次論 文報告集, Vol.22, No.1, pp.241-246, 2000
- 6)近松竜一ほか:高炉スラグ微粉末の粉末度評価法に関する研究,土木学会論文集,第
 420号, V-13, pp.71-80、1990
- 7) 藤井隆史ほか:高炉水砕スラグを用いたセメント硬化体の耐硫酸性に関する研究, コン クリート工学年次論文集, Vol.31, No.1, pp.847-852, 2009

第7章

高強度コンクリートでのシングルミクロン

混和材料の性能検証

7.	1	概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・152
7.	2	高強度コンクリートにおけるダイラタンシー性状緩和の検証・・・・・・154
7.	3	シングルミクロン混和材料の最適置換率の検証・・・・・・・・・・・165
7.	4	高強度コンクリートにおけるシングルミクロン混和材料の各種性状・・・・172
7.	5	高強度コンクリートにおけるシングルミクロン混和材料の耐火性能・・・・177
7.	6	シングルミクロン混和材料の耐火時の通気率・・・・・・・・・・・・194
7.	7	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・203

7.1 概論

これまでの研究で得られた知見の応用として,実モルタル製品において,D50=1.5± 0.5μm のシングルミクロン高炉スラグ微粉末の妥当性の検証を**第6章**において実施し、本 研究で開発した D₅₀=1.5±0.5µm のシングルミクロン高炉スラグ微粉末の有効性を確認し た。一方で、D₅₀=1.5±0.5μm のシングルミクロンフライアッシュの優位性のある特性は、 高炉スラグ微粉末やシリカフュームと比べて,乾燥収縮の低減が改善できる程度の特性の みであった。ここで、フライアッシュの被粉砕性は高炉スラグ微粉末より良好であるため、 比較的に低コストで製造できる乾式粉砕および気流式分級による方式によって、高炉スラ グ微粉末より細かい領域まで製造できる可能性がある。D50=1.5±0.5µm のシングルミクロ ン高炉スラグ微粉末と同様の条件で、フライアッシュを粉砕、および分級した場合、サブ ミクロン領域まで製造できることを把握している。フライアッシュをサブミクロン領域ま で微粉化することで、反応する粒子の比表面積が増加するため、ポゾラン反応によるフラ イアッシュの活性指数が大きくなり、シリカフュームと同程度まで強度特性を改善できる 可能性が考えられる。それに加え,**第4章**の結果から,1µm より小さい粒子は,ダイラタ ンシー性状の改善に必須な粒径であるため、フライアッシュに関しては、シリカフューム 同様にサブミクロン領域での活用を行うことで、フライアッシュの用途拡大の可能性が広 がると考えられる。そこで、**表-7.1**に示す理由から、フライアッシュに関しては、D₅₀=0.9 ±0.2µm 程度まで小径化したサブミクロン領域のフライアッシュ(本研究では、サブミク ロンの上限に近い領域のため、このサブミクロン領域のフライアッシュもシングルミクロ ンのフライアッシュと記述する)の性能の検証も含めて研究を行うことした。また、シン グルミクロン混和材料のモルタル製品での妥当性の検証は実施したが、コンクリートにお いては性能評価を実施していない。そのため、コンクリートにおいてもシングルミクロン 混和材料の性能の評価が必要である。また、今後のプレキャスト製品の高機能化の手法と して、更なる水結合材比の低減を想定した場合、高強度コンクリート領域で、シングルミ クロンの高炉スラグ微粉末、およびフライアッシュの特性を最終的に検証することは必要 であると考えられる。

項目	メリット
圧縮強度	・比表面積増加による活性度指数の向上
被粉砕性	・フライアッシュの被粉砕性は高炉スラグ微粉末より高い
ガイラタンシー性性	・緩和には 1µm より小さい領域の粒子が必要
	・高強度コンクリートでの検証が必要

表-7.1 フライアッシュの更なる小径化の理由

ここで、シリカフュームは、マイクロフィラー効果と呼ばれるセメント硬化体中の空隙 を充填する作用を有しており、硬化体組織は緻密化し、コンクリートの強度および耐久性 向上に大きく寄与することや練り混ぜ性能の改善効果が大きいため、高強度コンクリート において混和材料として広く利用されている。そこで、**第3章**のシングルミクロン混和材 料の基本特性を把握した際と同様に、シリカフュームとシングルミクロン混和材料との性 能をコンクリートにおいて比較することとした。

よって、本章では、シングルミクロン高炉スラグ微粉末、およびフライアッシュの高強 度コンクリートでの特性を把握することを目的として、各種実験を実施した。ダイラタン シー性状の緩和について、高強度コンクリートにおけるシングルミクロン混和材料の有効 性の検証を7.2に、7.2から得られた知見から、ダイラタンシー性状の緩和に着目し た各種シングルミクロン混和材料の最適置換率の検証を7.3に示した。7.3から得ら れた最適置換率を参考とし、実用の可能性の近い配合条件の高強度コンクリートにおいて、 各種フレッシュ性状および硬化性状の把握を7.4に示した。高強度コンクリートの課題 である耐火性能について把握を実施した耐火性能実験を7.5に示し、シングルミクロン 混和材料の耐火時の通気率を7.6に、本章のまとめを7.7に記述した。

7.2 高強度コンクリートにおけるダイラタンシー性状緩和の検証

7.2.1 概要および使用材料

ダイラタンシー性状の緩和について、高強度コンクリートにおけるシングルミクロン混 和材料の有効性の検証を本節で行った。使用材料を表-7.2 に、レーザー回折式粒度分布測 定器(Microtrac MT3300EXII)によって測定を行った体積基準の混和材料の粒度分布を図 -7.1 に示す。

ベースセメントは、JIS R 5210「ポルトランドセメント」に準拠した普通ポルトランドセ メント(ブレーン比表面積:3,350cm²/g)とし、ダイラタンシー性状の緩和特性を把握す る混和材料は、粒径の異なる 2 種類のフライアッシュとした。また、これら混和材料の比 較として、JIS A 6207「コンクリート用シリカフューム」に準拠したシリカフューム(BET 比表面積:16.7m²/g)を使用した。骨材は、高強度コンクリートにおいて一般的に使用さ れている安山岩を使用した。

ここで、フライアッシュは、JIS A 6201「コンクリート用フライアッシュ」に準拠したフ ライアッシュ II 種をベースとし、粉砕、および分級により、D₅₀=1.5±0.5µm、および 0.9 ± 0.5 µmの2種類のシングルミクロンフライアッシュを試製した。**第4章**より、D₅₀=1.5 ±0.5µmの粒径のシングルミクロン高炉スラグ微粉末を、結合材中に内割りで 30%質量置 換した水準、および 1µm より小さい粒径の粒子がダイラタンシー性状の緩和に必須な粒径 である知見を得たため、D₅₀=1.5±0.5µm、および D₅₀=0.9±0.2µm の粒径のフライアッシ ュを使用することとした。

力折	***		封旦	密度	D ₅₀	強熱減量
石竹	17) 14	記与		(g/cm_3)	(μm)	(%)
練混ぜ水	水道水		W	1.00	-	-
セメント	普通ポルトランドセメント		N	3.16	17.1	1.03
混和材	シングルミクロン	D	FA1.6	2.55	1.63	3.87
	フライアッシュ	Б	FA0.8	2.67	0.81	1.99
	シリカフューム		SF	2.25	0.39	1.64
細骨材	安山岩砕砂	S		2.62	-	(2.58) *
粗骨材	安山岩砕石	G		2.63	-	(2.41) *
	高性能減水剤	SP		ポリカルボン酸エーテル系		
汨和刘	消泡剤		DF	ポリアルキレングリコール誘導体		
化七个日月小	海结运动		D	変性リグニンスルホン酸化合物と		
	厥和建建刖		N	オキシカルボン酸化合物の複合体		

表-7.2 使用材料

※骨材の()は、吸水率である。

図-7.1 混和材料の粒度分布

7.2.2 実験水準

本節で比較した実験配合を表-7.3 に示す。FA0.8-30,および FA1.6-30 は,第4章のダイ ラタンシー性状の緩和効果が大きかったシングルミクロン混和材料を 30%置換した水準で ある。FA0.8-30R の水準は,第3章の結果より、シングルミクロンフライアッシュ用いる ことで SP 添加率がシリカフュームを用いた場合より大幅に低下し、フローロスが予測され たため、FA0.8-30 に一般的な遅延剤を添加した水準である。また、FA0.8-20 の水準は、 FA0.8-30 と比較用の SF0.4-15 の水準の 1µm より小さい領域の頻度割合が中間程度となる 置換率が 20%であったため、FA0.8 を 20%置換した水準である。比較用の SF0.4-15 の水 準は、SF0.4 を 15%置換した水準である。

コンクリートの水結合材比は、すべての水準において 15.0%とし、単位水量は、全ての 水準において 150kg/m³とした、合計 5 水準の実験を行った。

水準 No.	W/B	SP/B	DN/B	R/B	単位量(kg/m ³)			
(種類-置換率)	(%)	(%)	(%)	(%)	W	В	S	G
FA1.6-30		1.6		-			497	
FA0.8-20		2.1		-			513	
FA0.8-30	15.0	1.9	0.03	-	150	1,000	497	824
FA0.8-30R		2.2		0.4			495	
SF0.4-15		2.8		-			489	

表-7.3 実験水準
7.2.3 練り混ぜ方法

結合材であるセメントと各種混和材は、練り混ぜ時に別々に計量して、練り混ぜ時に混 合した。練り混ぜの手順は、モルタル先行練りとし、「結合材+細骨材 → 空練 30 秒 → 注 水 → モルタル一体化時間+1分練混ぜ → 粗骨材 → 2分練混ぜ → 5分静置 → 30 秒練混 ぜ」とした。ミキサは、60L 容量の強制二軸型コンクリートミキサを用い、練り混ぜ容量 40L とし、回転数 52rpm にて行った。ここで、「モルタル一体化時間」とは、**第4章の写真** -4.1 に示したように、練り混ぜ開始から目視により水と結合材と細骨材が一体化し、その 後一体化の状態がほとんど変化しないと判断される時間である。

7.2.4 実験項目と評価方法

(1) フレッシュ性状

フレッシュ性状の評価方法として、本節では、コンクリートフローと空気量の測定を行った。コンクリートフローは、JISA1150「コンクリートのスランプフロー試験」に準拠して実施した。空気量の測定は、「第3章 3.5.1 フレッシュ性状」と同様に、JISA1128 「フレッシュコンクリートの空気量の圧力による試験方法-空気室圧力方法」に準拠し、コンクリートエアメータにより実施した。

コンクリートフローは、フロー値が 70±10cm の範囲となるように、高性能減水剤の添加 量によって調整を行い、SP の固形分 30%は、単位水量に加えて補正した。空気量は 2.0% 以下を目標とし、消泡剤添加率を DN/B=0.03%と一定とした。

コンクリートフローの測定時に、フローコーンを上に持ち上げてからペーストの広がり が概ね 50cm に達するまでの時間を、「付属書 JA(参考)コンクリートの 50cm フロー到達 時間の測定方法」に準拠し、同時に測定を行った。

経過時間によるフロー値の変化,およびダイラタンシー性状の大小を把握する目的で, 練上がりからの経過時間 5,30,および 60 分において測定を行った。各水準のコンクリー トの 50cm フロー到達時間による流動性やダイラタンシー性状の違いを確認する目的で,フ ロー値は 70±10cm と大きめの目標値に設定した。

以下に、コンクリートフローの試験手順を示す。

- フローコーンの内側、および鋼製平板の表面を、あらかじめ湿布などで拭く。フロ ーコーンを水平に設置した平板上に置く。
- ② 試料は、材料の分離を生じないように注意して詰めるものとし、スランプコーンに 詰め始めてから、終わるまでの時間は2分以内とする。高強度コンクリートおよび 高流動コンクリートの場合、適切な受け容器にためておいて偏りがないように流し 込み、突き固めや振動を与えない一層詰めとするか、または3層に分けて詰め、各 層5回突き棒で一様に突く。
- ③ スランプコーンに詰めたコンクリートの上面をスランプコーンの上端に合わせて ならした後、直ちにスランプコーンを鉛直方向に連続して引き上げる。スランプコ

ーンを引き上げる時間は JIS A 1101 の規定によって高さ 30cm で 2~3 秒とする。 ただし,試料がスランプコーンとともに持ち上がって落下するおそれのある場合は, 10 秒でゆっくり引き上げる。この後,スランプコーンの内側に多量の試料が付着 している場合には,これをゆっくりかき落として試料の中心部に静かに加える。

- ④ 50cm フロー到達時間は、スランプコーンを引き上げ、スランプコーン引上げ開始時からコンクリートの広がりが平板に描いた直径 50cmの円に最初に達した時までの時間を、ストップウォッチを用い 0.1 秒単位で測る。
- ⑤ コンクリートの動きが止まった後に、広がりの最大と思われる直径と、その直行する方向の直径を1mm単位で測る。コンクリートの広がりが著しく円形からはずれ、スランプフローの両直径の差が50mm以上となった場合には、同一バッチの別試料によって新たに試験する。
- (2) 流動性

流動性の評価方法として、本節では、V 漏斗を用いた漏斗時間の測定を行った。V 漏斗流 下試験は、JSCE-F 512「高流動コンクリートの漏斗を用いた流下試験方法(案)」に準拠し て実施した。吐出口の寸法は 75mm の V 漏斗試験機を用いた。スランプフローと同様に、 練り上がりからの経過時間 5,30 および 60 分において測定を行った。

以下に、V 漏斗流下試験の試験手順を示す。

- ① V漏斗の上面が水平となるように設置し、内面をあらかじめ湿布などで拭く。
- ② 吐出口下部にコンクリートの受け容器を設置し、底蓋を閉める。
- ③ コンクリートを,投入用容器を用いて V 漏斗の上端まで静かに流し込む。
- ④ コンクリートの上面をV漏斗の上端面に合わせてエッジなどでならす。
- ⑤ 上端面をならし終わった後に10秒以内に吐出口の底蓋を開け、コンクリートが全 量流出するまでの時間をストップウォッチで0.1秒まで測定し、これをV漏斗流下 時間とする。なお、漏斗の上部から流下状況を観察し、吐出口が開口した瞬間を流 出完了と判断する。あわせて、途中で閉塞ぎみとなったか否かなどの流下中の状況 を観察し記録する。
- (3) レオロジー特性

レオロジー特性の評価は,「**3章の3.5.2 粘性(ダイラタンシー性)**」と同様に回転粘度計の一種であるレオメータにて測定を行った。

なお、レオメータの測定に用いた試料は、**表-7.3** に示した水準の水結合材比 15.0%の骨 材を除いたペースト配合とし、初期の降伏値を同程度で比較するため、練り上がり時のフ ロー値を 180±10mm の範囲になるように高性能減水剤の添加量によって調整を行った。な お、フローコーンは、 ϕ 50×50mm のフローコーンを用い、練り上がり 5、30、および 60 分において測定を行った。練混ぜの手順は、「空練 10 秒 → 注水 → ペーストー体化時間 まで 139rpm (低速) 練混ぜ → 掻き落とし → 120 秒 285rpm (中速) 練混ぜ」とした。 ミキサは、3L 容積のモルタルミキサを用い、練り混ぜ容量 1L とした。

(4) 引張抵抗によるダイラタンシー性状の評価(引張抵抗値試験)

引張抵抗によるダイラタンシー性状の評価は、「**4章の4.2.3** (7) 引張抵抗に よるダイラタンシー性状の評価(引張抵抗値試験)」と同様に行った。コンクリートの試料 を 5cm の篩を通過させ、粗骨材を除外した試料にて試験を実施した。

(5) コンクリートの作業性を作業者による定性評価試験

実際のコンクリート作業の作業者によるダイラタンシー性状の大小の感覚と、定量値で あるレオメータによる測定値、または引張抵抗試験値との比較を行うことを目的に、コン クリートの作業性を作業者による定性評価を実施した。

コンクリートの作業性を作業者による定性評価試験は、スコップによる練返しや供試体 成型時の力の必要具合について順位をつけて行った。試験内容は、1人10点を最高として 3人の作業者で表-7.4に示す点数をつけて評価を行った。

作業性の点数の目安(点)	内容
0~2	ダイラタンシー性が大きい,重い(扱いにくい)
3~4	ダイラタンシー性がやや大きい,やや重い
5~6	ダイラタンシー性が普通,一般的
7~8	ダイラタンシー性がやや小さい,やや軽い
9~10	ダイラタンシー性が小さい,軽い(扱いやすい)

表-7.4 作業者による作業性の点数の目安

7.2.5 実験結果および考察

(1) フレッシュ性状

フレッシュ性状の試験結果を表-7.5に示す。

配合 No. (種類-置換率)	SP/B (%)	空気量 (%)	モルタル一体 化時間(秒)	練り上がり 温度 (℃)	経過 時間	フロー (cm)	50cm 到達 時間(秒)	V漏斗流下 時間(秒)
					5分	74.3	12.9	49.2
FA1.6-30	1.6	1.8	360	25.5	30分	71.5	20.1	62.2
					60分	73.5	29.1	103
					5分	70.3	16.4	63.3
FA0.8-20	2.1	1.6	150	23.9	30分	70.5	25.2	81.3
					60分	68.0	39.7	166
					5分	64.0	13.0	46.0
FA0.8-30	1.9	2.0	50	23.6	30分	61.8	26.4	47.0
					60分	60.5	27.9	91.2
					5分	69.8	12.7	40.5
FA0.8-30R	2.2	1.9	50	23.4	30分	72.5	11.6	35.7
					60分	68.0	18.5	61.3
					5分	73.8	16.5	52.2
SF0.4-15	2.8	1.8	180	24.9	30分	74.0	22.5	110
	2.8				60分	69.5	37.2	216

表 7.5 フレッシュ性状の試験結果(コンクリート)

目標範囲のフロー値となるように調整した SP 添加率は, シリカフュームを用いた水準より, シングルミクロンフライアッシュを用いた水準の方が低減できた。FA0.8-30 は, SF0.4-15 と比べると 10cm 程度フロー値が小さい。ここで, FA0.8-30R の方が FA0.8-30 より SP 添加率は 0.3%多く, フロー値も約 6cm 大きい。この結果から, SF0.4-15 と同程度のフロー値である 74cm とするためには, FA0.8-30 の SP 添加率は 2.4%程度と推測される。

モルタル一体化時間は, FA0.8-30 と FA0.8-30R が 50 秒, SF0.4-15 が 180 秒となった。 FA0.8-30 の方が SF0.4-15 と比べ, 大幅にモルタル一体化時間は短縮した。また, FA0.8-30, FA0.8-20, および FA1.6-30 とシングルミクロンフライアッシュの置換率の低下, 粒径が大 きくなるとともにモルタル一体化時間が長くなる傾向となった。これは, シングルミクロ ンフライアッシュの置換率の低下とともに最密充填に必要な 1µm より小さい領域の粒径が 不足したためであると思われる。

シングルミクロンフライアッシュを用いた水準の 50cm 到達時間は, SF0.4-15 より短い

傾向となった。また,懸念を予測していたフローロスについては,シングルミクロンフラ イアッシュを用いた水準の経過時間によるフローロスや 50cm 到達時間の変化も小さいこ とから,SF0.4-15 より高性能減水剤が少なくても遅延剤は必要ないと考えられた。

V 漏斗流下時間は, FA0.8-20 の経過時間 5 分を除いて, シングルミクロンフライアッシ ュを用いた水準の方が, SF0.4-15 より流下時間が短くなった。この結果から, シングルミ クロンフライアッシュを用いたコンクリートの流動性は, シリカフュームと同等以上の性 能を有していることが分かった。

以上のことより,実用的なコンクリートとしてのフレッシュ性状は,SF0.4-15 とシング ルミクロンフライアッシュを用いた水準は同程度であると判断できるため,本節の目的で あるダイラタンシー性状の大小をコンクリートとして評価を行う試料として妥当であると 考える。

(2) ダイラタンシー性状

ダイラタンシー性状に関するコンクリートにおける作業性の評価の点数とペーストでの 塑性粘度などの試験結果,引張抵抗試験結果を表-7.6 に、3 人の作業者による経過時間ごと の作業性の評価の点数の変化を表-7.7 に、練り上がりからの経過時間 5、30、および 60 分 におけるせん断速度とせん断応力の関係を図-7.2 に、ペーストの塑性粘度と作業者の作業 性の点数の合計との関係を図-7.3 に、コンクリートから粗骨材を除去したモルタルでの引 張抵抗値と作業者の作業性の点数の合計を図-7.4 に示す。

配合 No.	記	フロー	塑性粘度*(Pa·s)			引張	抵抗值	作業者の点数(点)			
(種類-置換率)	号	(mm)	5分	30分	60分	5分	30分	60分	5分	30分	60分
FA1.6-30	D	176	31.2	33.1	38.1	13.1	17.4	31.4	13	8	2
FA0.8-20	В	188	13.1	19.3	23.4	11.0	13.4	17.5	18	14	10
FA0.8-30	А	180	6.5	8.9	10.7	5.1	6.5	8.5	26	20	18
FA0.8-30R	С	176	9.1	12.8	13.4	4.8	6.1	6.3	30	23	20
SF0.4-15	Е	175	12.1	15.2	16.7	6.6	7.7	8.5	25	21	20

表-7.6 ダイラタンシー性状に関する各種試験結果(ペーストおよびコンクリート)

※せん断速度が 50~100s⁻¹の時の塑性粘度

作業	経過	良好			\leftarrow		点数		\rightarrow			不良
者	時間	10	9	8	7	6	5	4	3	2	1	0
	5分	C	А	Е		В			D			
1	30分		С	A,E			В			D		
	60分			C,E	А			В				D
	5分	С	Е	А		В	D					
2	30分				Е	С	А	В	D			
	60分					Е		A,C	В		D	
	5分	С	А	Е		В	D					
3	30分			С	А	Е	В		D			
	60分			С	А	Е			В		D	

表-7.7 3人の作業者による経過時間ごとの作業性の評価の点数の変化

※表-7.7 の A~E までの記号は,表-7.6 の配合 No.の記号である

図-7.2 各水準のペーストにおけるせん断速度とせん断応力の関係

図-7.3 ペーストの塑性粘度と作業者の作業性の点数の合計との関係

図-7.4 モルタルの引張抵抗値と作業者の作業性の点数の合計との関係

表-7.6 より, 作業者による作業性の評価は, FA0.8-30R, FA0.8-30, SF0.4-15, FA0.8-20, および FA1.6-30 の順で良好となった。FA0.8-30R と FA0.8-30 の評価の差については, FA0.8-30R の練上がり時のフローが大きかったため, または遅延剤の添加により, セメン トの水和反応が遅延したためであると考えられる。また, 表-7.7 より, すべての水準にお いて 3 人の作業性の点数は経過時間とともに低下し, 経過時間とともにダイラタンシー性 状や粘性が大きくなったと推測される。これは, 図-7.2 の経過時間とともにせん断応力が 増加しており、また表-7.6の塑性粘度が増加しているのと同じ傾向となっている。

図-7.3 より、レオロジー曲線のせん断速度 50~100s⁻¹の傾きである塑性粘度と作業性の 点数とは、比較的高い相関が得られたことから、作業者の経験則によるダイラタンシー性 状の大小の感覚による定性的な評価と回転粘度計から得られる定量的な値は、比較的相関 が高いことが分かった。しかしながら、コンクリートにおける作業者による感覚では、ダ イラタンシー性状が比較的低く感じられた SF0.4-15 の水準は、ペーストにおける塑性粘度 が比較的大きな値となった。そのため、コンクリートにおける作業者の経験的なダイラタ ンシー性状との回転粘度計から得られる最大せん断応力や、どのせん断速度における塑性 粘度を適用するのかなどの解析手法の見直しなど、精度や信頼性の向上が今後の課題と考 えられる。

図-7.4 より、コンクリートから粗骨材を除去したモルタルにおいて引張抵抗試験を実施 した引張抵抗値と作業者による点数は、図-7.3 に示したペーストで測定した回転粘度計よ り相関が大きい結果となった。

よって、実際のコンクリートの作業者による作業性の経験的なダイラタンシー性状の定 性的な評価は、引張抵抗値により定量的に評価が可能であることが分かった。その精度は、 比較的高く評価を行うことが可能であることも検証することができた。

ここで,結合材の各水準の粒度分布を図-7.5 に,混和材料の各水準の置換率における粒 度分布を図-7.6 に示す。

図-7.5 より、すべての水準において、母体セメントのモード径の頻度のピーク(22µm 程度)より、それぞれの混和材料のモード径のピークの頻度の方が小さくブロードな分布である。また、図-7.6 より、1µm より小さい領域の粒子の割合は、SF0.4-15、FA0.8-30、FA0.8-20、および FA1.6-30 の順で多いことが分かる。SF0.4-15 を除いたダイラタンシー性状は、FA0.8-30R、FA0.8-30、FA0.8-20、FA1.6-30 の順で小さい。これは、図-7.5、あるいは図-7.6 の 1µm より小さい領域の頻度のピークが大きい順と一致する。つまり、「1µm より小さい領域の粒径の粒子の割合」が、コンクリートにおいてもダイラタンシー性状の緩和に寄与が大きいことが分かった。図-7.5 に示したそれぞれの水準の 1µm より小さい領域の粒子の割合は、FA0.8-30 で 17.6%、FA0.8-20 で 11.7%、FA1.6-30 で 9.0%、SF で 11.7%であり、これらの割合多い方が、ダイラタンシー性状の緩和の大小はおおむね一致する。

よって、コンクリートにおいても、ダイラタンシー性状の緩和には、1µm より小さい領 域の粒径の粒子が必須な粒径であることを検証することができた。

163

図-7.6 混和材料の各水準の置換率における粒度分布

7.3 各種シングルミクロン混和材料の最適置換率の検証

7.3.1 概要および使用材料

前節において,高強度コンクリートにおけるダイラタンシー性状の緩和について,本研 究で開発したシングルミクロン混和材料の有効性の検証を行った。同時に,ダイラタンシ ー性状の定量評価方法の妥当性の検証も実施した。その結果,1µm よりも小さい領域の粒 径の割合により,ダイラタンシー性状の大小が変化することを把握した。そこで,本研究 で開発した異なる粒径のシングルミクロン混和材料のダイラタンシー性状の緩和に着目し た最適置換率の検証をモルタルにて実施することとした。

本節で使用した材料を表-7.8 に、レーザー回折式粒度分布測定器(Microtrac MT3300EXII)によって測定を行った体積基準の混和材料の粒度分布を図-7.7 に示す。

ベースセメントは、JIS R 5210「ポルトランドセメント」に準拠した普通ポルトランドセ メント(ブレーン比表面積:3,380cm²/g)とし、シングルミクロン混和材料は、粒径の異 なる 3 種類のフライアッシュと、**第6章**においてモルタル材料として有効性の確認された D₅₀=1.5±0.5µmの高炉スラグ微粉末を使用した。また、これら混和材料の比較として、JIS A 6207「コンクリート用シリカフューム」に準拠したシリカフューム(BET 比表面積: 16.7m²/g)を使用した。細骨材は、高強度コンクリートにおいて一般的に使用されている 安山岩を使用した。

ここで、本節では、水結合材比も変化させた水準も実施するため、D₅₀=3.0±0.5μm の粒 径のシングルミクロンフライアッシュも使用することとした。

友长	+ 1 # 1		≓⊐	.巴.	密度	D_{50}	強熱減量
石小	17] 74		ΠĽ	5	(g/cm_3)	(μm)	(%)
練混ぜ水	水道水		V	V	1.00	-	-
セメント	普通ポルトランドセメント			N	3.16	15.9	1.07
	<u> </u>			FA3.0	2.53	3.01	2.00
	フライアッシュ	В		FA1.5	2.56	1.52	2.01
涅和林	////////			FA0.9	2.63	0.94	3.98
18871147J	シングルミクロン		ΠD	DE1 8	2 01	1.91	0.53
	高炉スラグ微粉末			DI 1.0	2.91	1.01	0.55
	シリカフューム			SF	2.25	0.39	1.64
細骨材	骨材 安山岩砕砂		9	5	2.62	-	(2.58) *
泪和刻	高性能減水剤		S	Р	ポリカルボン酸エーテル系		
化七个日月小	消泡剤		D	F	ポリアルキレングリコール誘導体		

表-7.8 使用材料

※骨材の()は、吸水率である。

7.3.2 実験水準

本節で比較した実験水準を表-7.9 に示す。各水結合材比において、SF0.4 を基準の置換率 として、比較するシングルミクロン混和材料を最大で SF0.4 の 2 倍の置換率まで置換率を 変化させた合計 30 水準の実験を行った。粒径が 3 種類であるシングルミクロンフライアッ シュはすべての水結合材比において実施し、粒径が 1 種類のシングルミクロン高炉スラグ 微粉末は水結合材比で 17.5%の水準のみ実施した。

水結合材比は、25.0、20.0、および 17.5%の 3 水準とした。W/B=25.0%は 80N/mm²、 W/B=20.0%は 100N/mm²、および W/B=17.5%は 130N/mm²相当のコンクリートにおけ る設計基準強度の水結合材比である。

配合は、単位水量 150kg/m³、単位粗骨材量 868kg/m³、設計空気量 2.0%としたコンクリート配合から、粗骨材を除外したモルタル配合とした。

W/B	いた新			AD 置換	率(%)		
(%)	AD 裡類	5	10	15	20	25	30
	SF0.4	0					
	FA0.9	0					
25.0	FA1.5	0	0				
	FA3.0	0	0				
	BF1.8						
	SF0.4		0				
	FA0.9		0	0			
20.0	FA1.5		0	0	0		
	FA3.0		0	0	0		
	BF1.8						
	SF0.4			0			
	FA0.9			0	0	0	
17.5	FA1.5			0	0	0	0
	FA3.0			0	0		0
	BF1.8			0	0	0	0

表-7.9 実験水準

7.3.3 練り混ぜ方法

結合材であるセメントと各種混和材は、練り混ぜ時に別々に計量して、練り混ぜ時に混 合した。練り混ぜの手順は、「結合材+細骨材 → 空練 30 秒 → 注水 → モルタル一体化 時間+2 分練混 → 3 分静置 → 30 秒練混ぜ」とした。ミキサは、10L 容量のモルタルミキ サを用い、練り混ぜ容量 2L とし、回転数 216rpm にて行った。ここで、「モルタル一体化 時間」とは、**第4章の写真-4.1** に示したように、練り混ぜ開始から目視により水と結合材 と細骨材が一体化し、その後一体化の状態がほとんど変化しないと判断される時間である。

7.3.4 実験項目と評価方法

(1) フレッシュ性状

0打フローと空気量は、「**第3章 3.5.1 フレッシュ性状**」と同様に、JASS 5M-701 に準拠して測定を行った。0打フローは 260±10mm となるようにポリカルボン酸エーテル 系の SP 添加量によって調整し、SP の固形分 30%は、単位水量に加えて補正した。空気量 は 3.0%以下を目標とし、消泡剤添加率を DN/B=0.03%と一定とした。

(2) レオロジー特性

レオロジー特性の評価は,「**3章の3.5.2 粘性(ダイラタンシー性)**」と同様に回転粘度計の一種であるレオメータにて測定を行った。

なお、レオメータの測定に用いた試料は、モルタルを使用した。練り上がった状態のモ ルタルでは、1mm 以上の細骨材が噛みこんでしまい、測定ができない。そのため、練り上 がったモルタルを 600μm の篩を通過させた試料を使用した。

(4) 引張抵抗によるダイラタンシー性状の評価(引張抵抗値試験)

引張抵抗によるダイラタンシー性状の評価は,「**4章の4.2.3 (7) 引張抵抗に** よるダイラタンシー性状の評価(引張抵抗値試験)」と同様に行った。

7.3.5 実験結果および考察

W/B=25.0%の水準の各種試験結果を表-7.10 に, W/B=20.0%の水準の各種試験結果を表 -7.11 に, W/B=17.5%の水準の各種試験結果を表-7.12 に示す。

シングルミクロン混和材料のダイラタンシー性状の緩和に着目した最適混和率の決定す る指標は、前節で、作業者による経験則とダイラタンシー性状の大小の定量評価の相関が 一番高かった引張抵抗値が SF0.4 と同等以下であることを優先して最適混和率を判断した。 また、モルタル一体化時間が短いほど、練り混ぜ時間は短縮でき、生産性が向上できるた め、SF0.4 の水準とモルタル一体化時間が短くできる水準も把握することとした。

表-7.10より,W/B=25.0%の領域では,FA0.9,およびFA1.5は,SF0.4と同じ置換率5%, FA3.0はSF0.4の2倍の置換率である置換率10%を混和材として混和することで、ダイラ タンシー性状を緩和したコンクリートの製造が可能であると判断された。しかしながら, FA1.5の置換率が5%の水準では、若干練り混ぜ時間がSF0.4より長くなり、生産性が低下 してしまう可能性も考えられた。

		-			, . ,		
10 孫粨	AD/B	SP/B	空気量	フロー	モルタル一体化	塑性粘度*	引張抵抗值
AD 裡類	(%)	(%)	(%)	(mm)	時間(秒)	(Pa•s)	(N)
SF0.4	5	1.20	0.9	268	100	1.1	0
FA0.9	5	1.05	0.5	265	<u>90</u>	0.6	<u>0</u>
EA15	5	1.05	0.5	264	120	<u>1.0</u>	<u>0</u>
ГАТ.5	10	0.95	1.6	259	<u>80</u>	0.5	0
EA2.0	5	1.05	1.5	269	110	2.0	3
FA3.0	10	0.85	0.9	252	<u>80</u>	2.2	<u>0</u>

表-7.10 各種試験結果(W/B=25.0%)

※せん断速度が 50~100s⁻¹の時の塑性粘度 ※下線は,SF0.4 と比べて同等となった混和率

表-7.11 より, W/B=20.0%の領域では, FA0.9 は SF0.4 と同じ置換率 10%, FA1.5 は SF0.4 の 1.5 倍の置換率である 15%を混和材として混和することで,ダイラタンシー性状を緩和 したコンクリートの製造が可能であると判断された。FA3.0 は SF0.4 の 2 倍以上置換しても, ダイラタンシー性状は SF0.4 より大きくなった。モルタル一体化時間は,FA0.9 は置換率 10%, FA1.5 は置換率 15%, FA3.0 は置換率 20%の場合,SF0.4 と比べて同等以下となる ことが分かった。そのため,FA3.0 の場合でも,コンクリートの製造工程においてダイラタ ンシー性状が許容できる範囲であれば,適用の可能性は可能であると考えられる。

↓ D 逓粘	AD/B	SP/B	空気量	フロー	モルタル一体化	塑性粘度*	引張抵抗值
AD 俚短	(%)	(%)	(%)	(mm)	時間(秒)	(Pa•s)	(N)
SF0.4	10	1.70	2.5	270	120	4.4	0
FADO	10	1.30	2.9	255	<u>120</u>	4.6	<u>0</u>
FA0.9	15	1.10	1.1	270	90	<u>3.4</u>	0
	10	1.35	1.0	252	170	5.2	3
FA1.5	15	1.20	1.6	264	<u>110</u>	<u>3.9</u>	<u>0</u>
	20	1.10	1.6	262	70	2.8	0
	10	1.45	2.1	262	240	8.1	16
FA3.0	15	1.25	1.7	269	140	5.4	11
	20	1.15	1.7	255	120	5.0	5

表-7.11 各種試験結果(W/B=20.0%)

※せん断速度が 50~100s⁻¹の時の塑性粘度

※下線は、SF0.4と比べて同等となった混和率

表-7.12より,W/B=17.5%の領域では,FA0.9はSF0.4の約1.3倍の置換率である20%, FA1.5は置換率25%,BF1.8は置換率25%を混和材として混和することで、ダイラタンシ ー性状を緩和したコンクリートの製造が可能であると判断された。FA3.0はW/B=20.0% と同様にSF0.4の2倍以上置換しても、ダイラタンシー性状はSF0.4より大きくなり、引 張抵抗値もW/B=20.0%より大きな値となった。モルタル一体化時間は、FA0.9は置換率 20%,FA1.5は置換率25%,BF1.8は置換率20%の場合、SF0.4と比べて同等以下となる ことが分かった。FA3.0は、モルタル一体化時間も大幅に長くなった。そのため、FA3.0、 つまり、平均的な粒径で3.0µm程度の混和材は、水結合材比が20%より小さい領域の高強 度コンクリート用混和材としての適用は難しいと考えられた。

4 D 呑粧	AD/B	SP/B	空気量	フロー	モルタル一体化	塑性粘度*	引張抵抗値
AD 裡類	(%)	(%)	(%)	(mm)	時間(秒)	(Pa•s)	(N)
SF0.4	15	2.50	2.3	269	90	5.2	5
	15	1.50	2.2	262	120	7.8	7
FA0.9	20	1.35	2.4	254	<u>90</u>	5.7	<u>3</u>
	25	1.35	1.5	265	60	<u>4.3</u>	0
	15	1.55	1.6	253	150	12.7	14
	20	1.40	1.0	252	100	8.6	8
ГАТ.Э	25	1.25	1.8	253	<u>90</u>	6.3	<u>5</u>
	30	1.30	0.9	265	90	<u>5.1</u>	5
	15	1.95	2.9	260	300	18.9	32
FA3.0	20	1.70	2.9	263	260	14.6	17
	30	1.35	2.9	262	230	13.6	13
	15	1.47	2.1	253	150	10.4	10
DE1 9	20	1.25	2.3	253	<u>90</u>	6.5	7
BF1.8	25	1.15	2.2	255	80	<u>4.8</u>	<u>5</u>
	30	1.00	1.9	266	80	3.3	2

表-7.12 各種試験結果(W/B=17.5%)

※せん断速度が 50~100s⁻¹の時の塑性粘度

※下線は、SF0.4 と比べて同等となった混和率

ダイラタンシー性状の改善,または作業性の改善の観点に着目した場合のシングルミク ロン混和材料の最適と思われる置換率を表-7.13 に示す。表-7.13 より,粒径が小さい混和 材ほど,その置換率は少なくても,ダイラタンシー性状や生産性がシリカフュームを用い た場合の高強度コンクリートと同等以上にできる知見が得られた。

表-7.13 シングルミクロン混和材料の最適と思われる置換率(%)

佰日	W/B=	=25.0%	の場合	W/B=	=20.0%	の場合	W/B=17.5%の場合					
供日	FA0.9	FA1.5	FA3.0	FA0.9	FA1.5	FA3.0	FA0.9	FA1.5	FA3.0	BF1.8		
生産性	5	10	10	10	15	20	20	25	不可	20		
ダイラタ ンシー性	5	5	10	10	15	不可	20	25	不可	25		

7.4 実用の可能性の高い配合条件の高強度コンクリートの各種性状の検証

7.4.1 概要および使用材料

前節において、本研究で開発した異なる粒径のシングルミクロン混和材料のダイラタン シー性状の緩和に着目した最適置換率の検証をモルタルにて実施した。その結果、モルタ ルレベルでのダイラタンシー性状の緩和に必要な置換率、および生産性向上に繋がる置換 率を把握した。そこで、実運用でも適用可能と考えられるシングルミクロン混和材料の配 合において、高強度コンクリートとしてのフレッシュ性状や硬化性状の把握を行うことと した。

本節で使用した材料を表-7.14 に示す。レーザー回折式粒度分布測定器(Microtrac MT3300EXII)によって測定を行った体積基準の混和材料の粒度分布は,前節の図-7.7 に 示した FA3.0 を除く混和材料を使用した。

ベースセメントは、JIS R 5210「ポルトランドセメント」に準拠した普通ポルトランドセ メント(ブレーン比表面積:3,380cm²/g)とし、シングルミクロン混和材料は、前節にお いてダイラタンシー性状の緩和に有効性の確認された粒径の異なる 2 種類のフライアッシ ュと、**第6章**においてモルタル材料として有効性の確認された D₅₀=1.5±0.5µm の高炉スラ グ微粉末を使用した。また、これら混和材料の比較として、JIS A 6207「コンクリート用シ リカフューム」に準拠したシリカフューム(BET 比表面積:16.7m²/g)を使用した。細骨 材および粗骨材は、高強度コンクリートにおいて一般的に使用されている安山岩を使用し た。

夕东	*+* 利		₹⊐	旦.	密度	D_{50}	強熱減量
石小	17] 74		βĽ	5	(g/cm_3)	(μm)	(%)
練混ぜ水	水道水		V	V	1.00	-	-
セメント	普通ポルトランドセメント	N			3.16	15.9	1.07
	シングルミクロン			FA1.5	2.56	1.52	2.01
	フライアッシュ			FA0.9	2.63	0.94	3.98
混和材	シングルミクロン	D	AD	DE1 0	2.01	1 0 1	0.52
	高炉スラグ微粉末			DF1.0	2.91	1.01	0.55
	シリカフューム			SF	2.25	0.39	1.64
細骨材	安山岩砕砂		9	5	2.62	-	(2.58) *
粗骨材	l骨材 安山岩砕石		(£	2.63	-	(2.41) *
泪和刻	高性能減水剤	SP		Р	ポリカルボン酸エーテル系		
混 机剂	消泡剤		D	F	ポリアルキレングリコール誘導体		

表-7.14 使用材料

※骨材の()は、吸水率である。

7.4.2 実験水準

本節で比較した実験水準を表-7.15 に示す。SF0.4 を 15%置換した水準を基準として,比較するシングルミクロン混和材料の置換率は,前節の表-7.13 に示した最適と思われる置換率と,その置換率から-5%低減した合計7水準とした。

コンクリートの水結合材比は、すべての水準において、前節において設計基準強度で 130N/mm²相当の領域で、ダイラタンシー性状の発生が一番顕著である 17.5%のみとし、 単位水量は、全ての水準において 150kg/m³とした。

水準 No.	W/B	SP/B	DN/B	s/a	単位量 (kg/m ³)			
(種類-置換率)	(%)	(%)	(%)	(%)	W	В	S	G
FA0.9-15		1.35		40.6			591	
FA0.9-20		1.25		40.3			584	
FA1.5-20		1.30		40.1			579	
FA1.5-25	17.5	1.10	0.03	39.8	150	857	571	868
BF1.8-20		1.05		41.0			600	
BF1.8-25	-	0.90		40.9			597	
SF0.4-15		2.30		39.7			569	•

表-7.15 実験水準

7.4.3 練り混ぜ方法

結合材であるセメントと各種混和材は、練り混ぜ時に別々に計量して、練り混ぜ時に混 合した。練り混ぜの手順は、モルタル先行練りとし、「結合材+細骨材 → 空練 30 秒 → 注 水 → モルタル一体化時間+1分練混ぜ → 粗骨材 → 2分練混ぜ → 5分静置 → 30 秒練 混ぜ」とした。ミキサは、60L 容量の強制二軸型コンクリートミキサを用い、練り混ぜ容量 40L とし、回転数 52rpm にて行った。ここで、「モルタル一体化時間」とは、**第4章**の**写真** -4.1 に示したように、練り混ぜ開始から目視により水と結合材と細骨材が一体化し、その 後一体化の状態がほとんど変化しないと判断される時間である。

7.4.4 実験項目と評価方法

(1) フレッシュ性状

フレッシュ性状の評価方法として、本節では、コンクリートフローと 50cm フロー到達時間、および空気量の測定を行った。コンクリートフローと 50cm フロー到達時間、および空気量は、「7.2.4 (1)フレッシュ性状」と同様とした。

コンクリートフローは、フロー値が 70±10cm の範囲となるように、高性能減水剤の添加 量によって調整し、SP の固形分 30%は、単位水量に加えて補正した。空気量は 2.0%以下 を目標とし、消泡剤添加率を DN/B=0.03%と一定とした。

(2) 流動性

流動性の評価方法として、本節では、V 漏斗を用いた漏斗時間の測定を行った。V 漏斗流 下試験は、「7.2.4 (2)流動性」と同様とした。吐出口の寸法は 75mm の V 漏斗 試験機を用いた。

(3) 引張抵抗によるダイラタンシー性状の評価(引張抵抗値試験)

引張抵抗によるダイラタンシー性状の評価は、「**4章の4.2.3** (7)引張抵抗によ るダイラタンシー性状の評価(引張抵抗値試験)」と同様に行った。コンクリートの試料を 5cm の篩を通過させ、粗骨材を除外した試料にて試験を実施した。

(4) 圧縮強度

圧縮強度の評価は、「**3章の3.5.3 圧縮強度**」と同様に JIS A 1108 に準拠して測定 を行った。

供試体の大きさは、 ϕ 100×200mm とし、20±1°Cの水中養生のほかに、プレキャストコンクリートでの強度特性を把握する目的で、蒸気養生も実施した。蒸気養生の条件は、練り上がり後、前置きは3時間、昇温は20°C/hの昇温曲線とし、最高温度70°Cを3時間保持し、4°C/hの下降曲線とし、20°Cの常温まで低下させた。

水中養生の材齢は 28 日とし,蒸気養生は材齢 24 時間後と 14 日で実施した。材齢 14 日 までは,蒸気養生終了後に,型枠を脱型し,温度 20±1℃,湿度 60±2℃の恒温恒湿室で気 中養生とした。

(5) 自己収縮

自己収縮の評価は、「**3章の3.5.5** 自己収縮」と同様に JCI 自己収縮委員会試験方 法を参考に埋め込みひずみ計(KM-100BT)を使用した。凝結の始発時間の測定は、JIS A 1147「コンクリートの凝結時間試験方法」に準拠し、測定した時間を基準とし、材齢 180 日まで自己収縮の測定を行った。

7.4.5 実験結果および考察

各種試験結果を表-7.16に、各水準の自己収縮を図-7.8に示す。

目標範囲のフロー値となるように調整した SP 添加率は,シリカフュームを用いた水準よ り、シングルミクロン混和材料を用いた水準の方が半分程度まで低減できた。SF0.4-15 の 水準の 50cm 到達時間,および V 漏斗流下時間と比べて、シングルミクロン混和材料の水 準は短い時間となったため、流動性や充填性は SF0.4-15 と同等以上の性能があると判断で きた。

モルタル一体化時間は, SF0.4-15 の 120±60 秒の範囲となり, ほぼ同程度の練り混ぜ時 間で生産が可能であると考えられる。また, FA0.9-20 の水準は 60 秒でモルタル一体化がで きたため, SF0.4-15 より生産性は大幅に向上できると考えられる。

ダイラタンシー性状は、前節で最適と考えられた置換率ではほとんど引張抵抗値でも測 定されず、良好な作業性となった。また、BF1.8-20の水準で、本節の引張抵抗値の最大値 である 15N を示したが、作業性で粘性が大きい、あるいはダイラタンシー性が大きいなど 感じられなかったため、15N 程度までであれば、コンクリート作業におけるダイラタンシ ー性状はほとんど感じられないと考えられた。

20°C水中養生の圧縮強度は、シングルミクロンフライアッシュは、粒径の大小に関わら ず、SF0.4-15 と同等の強度となることが分かった。これは、微粉末効果によりモルタル中 の微細な空隙が充填され、セメント鉱物中のカルシウムシリケートの水和を促進させた効 果であると考えられる。シングルミクロン高炉スラグ微粉末は、SF0.4-15、あるいは同一 粒径である FA1.5 の水準より、約 10N/mm²大きくなった。これは、フライアッシュと高炉 スラグ微粉末の反応特性の違いによると考えられた。

蒸気養生の圧縮強度は、SF0.4-15 の水準の SP 量が多く、熱を与える際のセメントの水和 反応の促進を遅延し、他の水準と比べて低い値を示した。シングルミクロンフライアッシ ュは、FA0.9 の方が、FA1.5 と比べて、約 10N/mm²大きくなった。蒸気養生では急激に熱 を与えるため、高温度領域では、フライアッシュのポゾラン反応の活性の割合が、その粒 径が小さいほど、比表面積が多くなり向上したと考えられる。シングルミクロン高炉スラ グ微粉末も、FA0.9 の水準と同程度の強度特性を示すことが分かった。よって、プレキャス トコンクリートにシングルミクロン混和材料を適用しても、強度特性は、シリカフューム を用いた場合と同等以上の特性が得られることが分かった。

図-7.8 より、本節の水結合材比、あるいは粉体量の自己収縮は、SF0.4-15 と比べてシン グルミクロン混和材料を用いた場合、ほぼ同等の収縮量となることが分かった。シングル ミクロン高炉スラグ微粉末を用いた水準のみ、100µm 程度収縮が大きい傾向となったが、 この程度のひずみ量であれば、無水石こうあるは、膨張材との併用で緩和できる領域のひ ずみ量である。よって、収縮の観点からも、シリカフュームを用いた場合と同程度の収縮 量となることが分かった。

以上のことから、シングルミクロン混和材料の高強度コンクリートにおける流動性や作

業性のフレッシュ性状,および圧縮強度や収縮の硬化特性は,実用的に用いられているシ リカフュームを用いた場合の高強度コンクリートと比べても,同等以上の性能を有するこ とが確認でき,シングルミクロン混和材料のコンクリートとしての性能の検証を行うこと ができた。

水準 No.	SD/D	モルタル	練り上	7 17	50cm		V 漏斗	引張	J	E縮強周	度	
(種類-	SP/B	一体化時	がり温	(cm)	到達時	至 <i>X</i> 重 (%)	流下時	抵抗	(N	(N/mm^2) *		
置換率)	(%)	間 (秒)	度 (°C)		間(秒)		間(秒)	值(N)	28日	1日	14日	
FA0.9-15	1.35	140	25.6	70.0	12	0.7	43	5	149	137	143	
FA0.9-20	1.25	60	25.8	66.0	13	0.5	38	0	145	134	142	
FA1.5-20	1.30	130	25.2	67.0	17	0.9	49	10	144	125	129	
FA1.5-25	1.10	100	25.4	65.0	12	1.3	42	5	144	125	130	
BF1.8-20	1.05	180	25.2	69.0	17	0.8	49	15	157	129	135	
BF1.8-25	0.90	100	25.3	63.5	13	1.3	41	0	155	139	143	
SF0.4-15	2.30	120	25.1	63.0	21	1.9	50	0	145	121	130	

表-7.16 各種試験結果

※圧縮強度の28日は20℃水中養生、1日、14日は蒸気養生である。

図-7.8 各水準の自己収縮ひずみ

7.5 高強度コンクリートにおけるシングルミクロン混和材料の耐火性能

7.5.1 概要および使用材料

前節までに、本研究で開発した異なる粒径のシングルミクロン混和材料について、実運 用でも適用可能と考えられる置換率の配合において、高強度コンクリートとしてのフレッ シュ性状や硬化性状の把握を実施した。その結果、シングルミクロン混和材料の高強度コ ンクリートとして適用できることを把握した。

ここで、高強度コンクリート構造物は、火災を受けるとコンクリートが爆裂し、かぶり 部分が脱落して耐火性能が低下することが知られている。火災での高強度コンクリート構 造物の安全性を確保する上で、コンクリートの耐火対策は必要不可欠である。その爆裂対 策手法の一つとして有機繊維の混入¹⁾がある。シングルミクロン高炉スラグ微粉末やフラ イアッシュを高強度コンクリート領域において、混和材料として適用する際には、耐火性 能を把握する必要があると考えられる。そこで、本節では、異なる粒径のシングルミクロ ンフライアッシュ、および高炉スラグ微粉末の耐火性能を検証することとした。検証する 手法として、シリカフュームを用いた高強度コンクリートを比較することで、これらシン グルミクロン混和材料の耐火性能について確認した。

使用材料は、7.2節から7.4節までに使用した材料を用いた。

ベースセメントは、JIS R 5210「ポルトランドセメント」に準拠した普通ポルトランドセ メント(ブレーン比表面積:3,380cm²/g)とし、シングルミクロン領域の混和材料は、D₅₀ =0.9±0.2µm の粒径である FA0.9 、D₅₀=1.5±0.5µm の粒径である FA1.5、および D₅₀= 3.0 ± 0.5 µm の粒径である FA3.0 の異なる粒径の 3 種類のフライアッシュと、D₅₀=1.5± 0.5µm の粒径である高炉スラグ微粉末(BF1.8)を使用した。また、これら混和材料の比較 として、JIS A 6207「コンクリート用シリカフューム」に準拠したシリカフューム(BET 比表面積:16.7m²/g)である SF0.4 を使用した。骨材は、高強度コンクリートにおいて一 般的に使用されている安山岩を使用した。爆裂対策繊維は、一般的に用いられている繊維 径 65µm、繊維長 12mm、密度 0.91g/cm³のポリプロピレン繊維(PP)を使用した。

ここで、 $D_{50}=3.0\pm0.5\mu m$ のシングルミクロンフライアッシュは、高強度コンクリートにおいてダイラタンシー性状の緩和が困難であることを把握しており、作業性の観点からは、高強度コンクリートの混和材料としての使用はできないと考えられた。しかしながら、シングルミクロン領域の異なる粒径の混和材料を用いた場合の耐火性能の知見が少なく、このような知見を得ることは、今後の研究として必要であると考えられたため、 $D_{50}=3.0\pm0.5\mu m$ のシングルミクロンフライアッシュも使用することとした。

177

7.5.2 実験水準

耐火性能の検証は、モルタル、およびコンクリートでの2段階で実施した。具体的には、 ステップ1では、モルタルでの各種混和材置換率と耐火性能の簡易評価を行い、ステップ2 では、コンクリートでの耐火性能の評価を行った。

ステップ1のモルタル配合は、水結合材比を20.0%とし、質量比で結合材:細骨材=1: 0.9とし、混和材を置換していない普通ポルトランドセメントを基準として、各混和材料を 質量置換率で5,15,20、および30%内割置換し、合計21水準とした。

ステップ2のコンクリート配合を表-7.17に示す。ステップ2では、水結合材比は、7. 4節の実運用でも適用可能と考えらえるシングルミクロン混和材料の検証の際と同様の 17.5%とし、シングルミクロンフライアッシュ、および高炉スラグ微粉末の置換率は、表 -7.18に示す理由により決定した。

水準 No.	DN/B	SP/B	PP	単位量(kg/m ³)			実験ケース			
(種類-置換率)	(%)	(%)	(vol%)	W	В	S	G	ケース1	ケース2	ケース3
BF1.8-20		1.05	-	150	857	600	868		0	
FA3.0-20		1.40	-			577			\bigcirc	
FA1.5-20		1.30	-			579			\bigcirc	0
FA0.9-20	0.02	1.25	-			584			\bigcirc	
SF0.4-15	0.05	2.30	-			569		\bigcirc	\bigcirc	
SF0.4-15PP		2.90	0.2			569		0		
FA1.5-25		1.10	-			571				0
FA1.5-30		1.15	-			562				0

表-7.17 実験水準

表-7.18 コンクリートでの各ケースの耐火性能の比較の目的

実験ケース	耐火性能の比較の目的
ケーフ 1	・SF0.4 を混和材とした場合の PP 繊維の効果
9-21	・PP 繊維は外割で 0.2vol%混和と無混和の比較
ケーフク	・シングルミクロン混和材の粒径および種類の比較
7-2	・各混和材置換率 20%(SF0.4 のみ 15%)
4.70	・FA1.5 を混和材とした場合の置換率の比較
7-23	・置換率 20, 25, および 30%

7.5.3 練り混ぜ方法

ステップ1,およびステップ2ともに,結合材であるセメントと各種混和材は,練り混ぜ時に別々に計量して,練り混ぜ時に混合した。

ステップ1の練り混ぜの手順は、「結合材+細骨材 → 空練 30 秒 → 注水 → モルタル 一体化時間+2 分練混ぜ → 3 分静置 → 30 秒練混ぜ」とした。ミキサは、10L 容量のモル タルミキサを用い、練り混ぜ容量 2L とし、回転数 216rpm にて行った。

ステップ 2 の練り混ぜの手順は、モルタル先行練りとし、「結合材+細骨材 → 空練 30 秒 → 注水 → モルタル一体化時間+1 分練混ぜ → 粗骨材 → 2 分練混ぜ → 5 分静置 → 30 秒練混ぜ」とした。ミキサは、60L 容量の強制二軸型コンクリートミキサを用い、練 り混ぜ容量 40L とし、回転数 52rpm にて行った。

ここで、「モルタル一体化時間」とは、第4章の写真-4.1 に示したように、練り混ぜ開始 から目視により水と結合材と細骨材が一体化し、その後一体化の状態がほとんど変化しな いと判断される時間である。

7.5.4 ステップ1(モルタル)の実験項目と評価方法

(1) フレッシュ性状

ステップ1では、モルタルフロー値が260±10cmの範囲となるように、高性能減水剤の 添加量によって調整し、SPの固形分30%は、単位水量に加えて補正した。空気量は3.0% 以下を目標とし、消泡剤添加率をDN/B=0.03%と一定とした。

モルタルフロー,および空気量の測定方法は,「**第3章 3.5.1 フレッシュ性状**」 と同様とした。

(2) 耐火性(質量変化率)

耐火性は,材齢7日および28日の供試体を用いて,使用最高温度1,150℃の仕様の小型 電気炉(マッフル炉(FUW232PA))にて実施した。供試体の大きさは,40×40×60mm とした。

以下に,耐火性(質量変化率)の試験手順を示す。

- 40×40×160mmの大きさの供試体を作成し、練混ぜ時の注水から24時間後に脱型し、温度20±1℃、湿度60±2%の恒温恒湿室に入れ、耐火試験を行うまで封かん養生にて保管する。
- ② 40×40×60mmの大きさとなるように乾式カッターで供試体を2つ作成する。
- ③ **写真-7.1** に示すように,1 水準2本の供試体を小型電気炉にランダムに配置する。 1回の耐火性試験で最大10本の供試体を設置する。
- ④ 加熱曲線は、図-7.9 に示す小型電気炉の加熱曲線の最大設定(1,100℃まで自動で 昇温)とし、1,100℃となった時点で70分間1,100℃を保持し、その後は自然冷却 とした。質量変化率 Mは、以下に示す7.1 式により算出した。質量変化率による 耐火性の評価が困難であると判断された場合は、目視により評価を行う。爆裂が確 認されない水準は、爆裂無しのため「○」、一部破片が採取可能であった水準は、 一部破片採取可のため「△」、爆裂した破片の回収が不可能であった水準は、破片 採取不可のため「×」とした。目視による耐火性の評価の判断の目安を写真-7.2 に 示す。

耐火試験前

耐火試験後

図-7.9 ステップ1の耐火試験の加熱曲線

写真-7.2 目視による耐火性の評価の判断の目安

7.5.5 ステップ2(コンクリート)の実験項目と評価方法

(1) フレッシュ性状

ステップ2では、コンクリートフロー値が70±10cmの範囲となるように、高性能減水 剤の添加量によって調整し、SPの固形分30%は、単位水量に加えて補正した。空気量は 2.0%以下を目標とし、消泡剤添加率をDN/B=0.03%と一定とした。

コンクリートフロー,および空気量の測定方法は,「7.2.4 (1)フレッシュ性状」 と同様とした。

(2) 圧縮強度

圧縮強度の評価は、「**3章の3.5.3 圧縮強度**」と同様に JIS A 1108 に準拠して測定 を行った。

供試体の大きさは、 φ100×200mm とした。24 時間後の脱型から 20±1℃の水中養生を 行い、耐火試験と同材齢である材齢 28 日の圧縮強度の確認を行った。

(3) 含水率

含水率は、耐火試験体と同一の条件である封かん養生した φ 100×200mm の円柱供試体 とし、耐火試験時である材齢 28 日を基準として 105℃の乾燥器で定量となるまで乾燥させ、 質量変化率 M を 7.2 式より算出し、含水率とした。

$$M = (m_2 - m_1) / m_1 \times 100$$
 [7.2]
 $C \subset K$,

M :含水率 (%)

*m*₁ : 材齢 28 日の供試体の質量の測定値(g)

*m*₂ : 定量となった時の供試体の質量の測定値(g)

を意味する。

(4) 耐火性(質量変化率)

耐火性は,材齢28日の供試体を用いて,**写真-7.3**に示すような大型加熱炉にて実施した。 供試体の大きさは,100×100×4,000mmとした。

以下に,耐火性(質量変化率)の試験手順を示す。

- 100×100×4,000mmの大きさの供試体を作成し、練混ぜ時の注水から24時間後に 脱型し、温度20±1℃、湿度60±2%の恒温恒湿室に入れ、材齢28日まで封かん養 生にて保管する。
- ② 写真-7.4 に示すように、1 水準2本の供試体を大型加熱炉にランダムに配置する。 供試体の周囲を厚さ50mm,最高使用温度1,400℃のセラミックファイバーの断熱 材で覆い、加熱条件は、1面加熱とした。

③ 加熱曲線は, ISO-834-1 「Fire - resistance tests - Elements of building construction - Part 1 (ISO-834)」に規定されている 7.3 式に示す標準加熱温度曲線 Tに準拠し、3時間加熱を行い、その後は自然冷却とした。温度の制御は、加熱炉内に設置された6本のK型熱電対の平均温度が、図-7.10 に示す ISO-834 となるように制御を行った。質量変化率 Mは、ステップ1の耐火試験と同様に、7.1 式により算出した。

$$T = 345 \times log(8 \times t + 1) + 20$$
 [7.3]
ここに、
T :加熱温度(°C)
t :経過時間(分)
を意味する。

写真-7.3 大型加熱炉

写真-7.4 大型加熱炉への供試体配置状況

図-7.10 ステップ2の耐火試験の加熱曲線

(5) 爆裂深さ

爆裂深さは、耐火試験に用いた供試体を使用した。耐火試験終了後、加熱面の 100×4,000mmの供試体の断面積に対し、25mm×25mmのグリッドを切り、グリッドの各 節点において、**写真-7.4**に示した加熱を受けない面であるコンクリート表面高さを原点(高 さ 100mm)として,爆裂後のコンクリートの加熱面までの高さを測定し,その平均値を爆 裂深さとした。

(6) 細孔径分布

細孔径分布は、PP 繊維を混入した SF0.4-15PP を除いた 7 水準の耐火試験前の材齢 28 日の試料について水銀圧入法にて測定を行った。SF0.4-15PP の水準は、SF0.4-15 の水準に PP 繊維を混和しているため、SF0.4-15 と SF0.4-15PP の耐火試験前の硬化体の細孔構造は 同様であると判断した。試料は、5mm の篩を用いて粗骨材を除外したモルタルとし、 $\phi 50 \times 100$ mm の円柱供試体を作成し、コンクリート耐火試験体と同一養生を行った。

前処理および測定は、「第5章 5.2.3 実験項目と評価方法 (4)細孔径分布」 と同様とし、水銀圧入法は、自動水銀ポロシメータ・細孔分布測定装置(POREMASTER 60GT)にて測定を行った。

(7) 水酸化カルシウム量の定量

水酸化カルシウム量の定量は、水酸化カルシウムの脱水分解(Ca(OH)₂ → CaO + H₂O) による結晶水が爆裂現象の一因と考えられたため、細孔径分布と同様に、PP 繊維を混入し た SF0.4-15PP を除いた 7 水準の耐火試験前の材齢 28 日の試料を対象として実施した。粉 末 X 線回折装置(BRUKER D2 PHASER)を用いて内部標準法²⁾を参考とし、算出した。 以下に、水酸化カルシウム量の定量の試験手順を示す。

- 5mmの篩を用いて粗骨材を除外した試料を用い、φ50×100mmの大きさの供試体 を作成し、耐火試験と同様に、練混ぜ時の注水から24時間後に脱型し、温度20±1℃、 湿度60±2%の恒温恒湿室に入れ、材齢28日まで封かん養生にて保管する。
- ② 前処理として、 φ 50×100mm の大きさの供試体をハンマーで 5mm 以下の小片に 粉砕した後、試料をアセトンに 5 分間浸せきすると同時に 150µm 以下まで微粉砕 を行う。
- ③ 微粉砕した粉末試料 1.800g に対し、内部標準として α-Al₂O₃ (コランダム)を質量内割合で 10% (0.200g) 混和し、乳鉢および乳棒を用いて、混合する。
- ④ 混合した試料を測定用ホルダーに表面が平らになるように詰め,粉末 X 線回折装置 にセットし,結晶相の同定を行う。水酸化カルシウム量は,水酸化カルシウムの2 θ=18.1°[1 0 1]面のピーク面積 I_{Ca(OH)2} と,内部標準に用いたコランダムの 2θ=57.4°[101]面のピーク面積 I_{Al2O3}の比である,I_{Ca(OH)2} / I_{Al2O3}で評価を行う。

7.5.6 ステップ1(モルタル)の実験結果および考察

ステップ1の実験結果を表-7.19に示す。

目標範囲のフロー値となるように調整した SP 添加率は,SF0.4 を用いた水準より,シン グルミクロン混和材料を用いた水準の方が低減できた。SF-30M の水準は,SP 添加率をメ ーカー推奨上限添加率まで添加してもフロー値の目標範囲まで調整することができなかっ た。また,混和材を混和していないセメント単体である N の水準は,練混ぜ時のモルタル の一体化が確認できず,一体化時間を測定できなかったため,練混ぜ時間は 15 分とした。 モルタル化時間は,シングルミクロン混和材料の置換率の増加とともに短縮される傾向で あった。

質量変化率では、爆裂しなかった水準の質量変化率の違いがほとんど変化なく、耐火性の評価が困難であった。そのため、**写真-7.2** に示した目視による「○, △, および×」での評価を行った。

表-7.19 より,材齢7日より,材齢28日まで養生を行った耐火試験の方の質量変化率は 小さくなった。つまり,耐火性は向上する傾向であった。これは,材齢の経過によりモル タルの水和反応が進行し,内部の水分量が低減したためであると推測できる。すべての混 和材料において,各混和材置換率が少ないほど,耐火性は向上した。また,同一置換率で も,粒径の大きなシングルミクロンフライアッシュを用いるほど,耐火性は向上した。こ れは,各混和材置換率が小さく,粒径の大きな混和材ほど,加熱時の蒸気圧を緩和する十 分な空隙が成形されたものと考えられる。シングルミクロン高炉スラグ微粉末を用いた水 準は,すべての水準で爆裂が確認されず,耐火性に優れていることが分かった。

よって, BF1.8, FA3.0, FA1.5, FA0.9, および SF0.4 の順で耐火性は良好であり, 同程 度の粒径である BF1.8, および FA1.5 では, BF1.8 を用いた方の耐火性が向上することが分 かった。本研究で開発したシングルミクロン混和材料のモルタルにおける耐火性能は, 同 一置換率のシリカフュームより優れている知見が得られた。

187

水準 No.	AD/B	SP/B	フロー	モルタル一体	質量変化	2率(%)	耐火性の評価	
(種類-置換率)	(%)	(%)	(mm)	化時間(秒)	7日	28 日	7日	28 日
N	0.0	2.00	268	一体化せず	11.7	11.6	\bigcirc	0
SF0.4-5M	5.0	1.50	251	170	89.3	12.1	\bigtriangleup	0
SF0.4-15M	15.0	3.00	266	20	79.0	100	\bigtriangleup	×
SF0.4-20M	20.0	4.80	251	50	100	100	×	×
SF0.4-30M	30.0	5.00	170	60	100	100	×	×
FA0.9-5M	5.0	1.40	260	220	12.0	11.9	0	0
FA0.9-15M	15.0	1.85	269	40	49.9	12.3	\bigtriangleup	0
FA0.9-20M	20.0	1.60	261	30	100	100	×	×
FA0.9-30M	30.0	1.35	252	30	100	100	×	×
FA1.5-5M	5.0	1.40	267	270	11.9	11.9	0	0
FA1.5-15M	15.0	1.70	260	80	12.0	11.9	0	0
FA1.5-20M	20.0	1.25	255	60	100	12.2	×	0
FA1.5-30M	30.0	1.05	261	30	100	100	×	×
FA3.0-5M	5.0	1.45	253	420	11.9	11.9	0	0
FA3.0-15M	15.0	1.15	265	240	12.0	11.9	0	0
FA3.0-20M	20.0	1.05	269	240	38.6	12.2	\bigtriangleup	0
FA3.0-30M	30.0	0.95	250	90	100	100	×	×
BF1.8-5M	5.0	1.40	269	420	11.8	12.0	0	0
BF1.8-15M	15.0	1.10	265	240	11.5	11.9	0	0
BF1.8-20M	20.0	1.05	252	90	12.0	12.0	0	0
BF1.8-30M	30.0	0.91	265	30	11.9	11.9	0	0

表-7.19 ステップ1 (モルタル) での実験結果

7.5.7 ステップ2(コンクリート)の実験結果および考察

ステップ2の実験結果を表-7.20に示す。

全ての水準において、フロー値および空気量は目標範囲に調整できた。シングルミクロ ン混和材の粒径および種類の比較であるケース2の混和材置換率を20%と同一とした結果 より、モルタル一体化時間は、粒径が小さいほど短縮された。FA3.0を用いた水準において は、スコップにより練返しを行う際にダイラタンシー性が感じられ、作業性が悪かった。

圧縮強度は、全ての水準において150N/mm²前後となった。BF1.8を用いた水準が、SF0.4、 およびシングルミクロンフライアッシュを用いた水準より強度は大きくなる傾向となった。

水準 No.	SP/B	モルタル一体化	練上り温	フロー	空気量	含水率	質量変化	爆裂深	28日圧縮強
(種類-置換率)	(%)	時間(秒)	度 (℃)	(mm)	(%)	(%)	率 (%)	さ(mm)	度(N/mm ²)
BF1.8-20	1.05	180	25.2	69.0	0.8	3.1	15.6	5.9	157
FA3.0-20	1.40	780	25.2	68.0	2.0	3.5	34.3	21.4	153
FA1.5-20	1.30	130	25.2	67.0	0.9	3.3	74.5	67.7	144
FA0.9-20	1.25	60	25.8	66.0	0.5	3.4	49.8	37.1	145
SF0.4-15	2.30	120	25.1	63.0	1.9	3.3	100	100	145
SF0.4-15PP	2.90	100	24.5	65.0	0.8	3.1	20.4	11.8	154
FA1.5-25	1.10	100	25.4	65.0	1.3	3.1	74.7	69.3	144
FA1.5-30	1.15	80	24.7	64.5	1.1	3.9	72.1	65.2	144

表-7.20 ステップ2(コンクリート)での実験結果

実験ケースごとの耐火試験(爆裂)後の供試体の状況を**写真-7.5** に、質量変化率と爆裂 深さ、または含水率との関係を図-7.11 に、実験ケースごとの質量変化率を図-7.12 に、実 験ケースごとの細孔直径と細孔容積との関係を図-7.13 に示す。図-7.11 より、質量変化率 と爆裂深さは正の相関があった。含水率は、定量まで約 60 日要し、全ての水準において 3 ~4%程度となり、図-7.11 より、質量変化率と含水率の高い相関は確認できなかった。

ケース1では,SFを混和材として PP 繊維の有無による耐火性の確認を行った。PP 繊維 を混和しないとすべて爆裂してしまったが,PP 繊維を 0.2vol%混和することで,質量変化 率は減少した。これは,加熱時の蒸気圧を緩和する十分な空隙が成形されたもの¹⁾と考え られる。

ケース3では、同一粒径である FA1.5 を用い、置換率の違いによる耐火性の確認を行った。FA1.5 の置換率が増加しても質量変化率はほぼ同程度となった。ステップ1のモルタル では置換率が少ないほど質量変化率は小さくなる傾向となった。しかしながら、コンクリ ートではモルタルと同様な傾向は確認できなかった。図-7.13 のケース3の細孔直径と細孔 容積の関係からも顕著な差が確認できなかった。ここで、ステップ1とステップ2で FA1.5 の置換率と質量変化率との関係が異なる傾向を示した要因のひとつとして、ステップ1の 昇温曲線よりステップ 2 の方が, 急な昇温曲線であったことにより, 加熱時の蒸気圧の緩 和状況が異なっていたと考えられる。

ケース 2 では、シングルミクロン混和材料の同一置換率での耐火性の評価を行った。図 -7.12、および写真-7.5 より、耐火性は、BF1.8-20、FA3.0-20、FA0.9-20、FA1.5-20、お よび SF0.4-15 の順で良好となった。とくに、BF1.8 を用いた水準の質量変化率が小さくな り、ステップ1のモルタル同様に、一番耐火性が良好となった。また、コンクリートでは、 シングルミクロンフライアッシュの置換率が同一の場合、粒径の違いによる質量変化率の 変化は確認できなかった。図-7.13 のケース 2 の細孔直径と細孔容積の関係から、細孔直径 0.01µm 以下の細孔容積は、SF0.4、FA3.0、FA1.5、FA0.9、および BF1.8 の順で多い傾向 であった。細孔直径 0.01µm 以下の割合が多いと質量変化率は大きくなる傾向になった。こ れは、耐火試験前から、細孔直径 0.01µm 以下の細孔容積の割合が多いことで、蒸気圧の緩 和が低くなり、質量変化率が大きくなったと考えられる。写真-7.5 の BF1.8-20 の矢印部分 は、1 本の供試体底面の一部(1/4 程度)が爆裂した部分を示す。

写真-7.5 実験ケースごとの耐火試験後の供試体の状況

ここで、李の研究³⁾によると、PP 繊維を混入した場合、加熱により、細孔直径 0.003~ 0.1µm の小さな細孔容積は減少し、0.1~0.3µm の細孔容積が増加し、蒸気圧が緩和される としている。そのため、0.1µm 以下の細孔直径に着目し、図-7.14 に 0.1µm 以下の積算細孔 容積と質量変化率との関係を示す。図-7.14 より、0.1µm 以下の積算細孔容積が少ないほど 質量変化率は小さい傾向になることが分かった。つまり、BF1.8-20 の水準は、PP 繊維を混 入した場合の加熱による細孔直径の変化後に近い細孔容積の分布になっているため、耐火 性が向上したと考えられる。

また,図-7.15 に材齢 28 日におけるモルタルに含有する水酸化カルシウム量と質量変化 率との関係を示す。ピーク面積比 I_{Ca(OH)2} / I_{Al2O3} が大きいほど質量変化率が大きいと図-7.15 から判断できる。水酸化カルシウム量が多いほど耐火性が小さいことは、水酸化カルシウ ムの脱水分解による結晶水が爆裂現象の一因としている高野らの研究¹⁾ と一致する。これ らのことより、耐火性が改善された理由として、0.1μm 以下の細孔直径の割合の違いと水 酸化カルシウム量の違いであると考えられた。

以上の結果より、シングルミクロン高炉スラグ微粉末、シングルミクロンフライアッシ ュ、およびシリカフュームの順で耐火性は優れていることが分かった。そのため、本研究 で開発したシングルミクロン混和材料は、シリカフュームより耐火性は改善される知見を 得た。

図-7.14 耐火試験前の 0.1µm 以下の細孔容積

193

7.6 シングルミクロン混和材料の耐火時の通気率

7. 6. 1 概要および使用材料

前節において、本研究で開発した異なる粒径のシングルミクロンフライアッシュ、およ び高炉スラグ微粉末の耐火性能について確認した。その結果、本研究で開発したシングル ミクロン混和材料は、シリカフュームより耐火性は改善される知見を得た。耐火性が改善 された理由として、耐火開始前の硬化体において、0.1µm 以下の細孔直径の割合の違い、 および水酸化カルシウム量の違いにより、耐火時の水蒸気を緩和していると考えられた。 しかしながら、実際の耐火時の水蒸気の発生量やその圧力を測定することは難しいため、 段階的に温度を変更し、実際の供試体の通気率を測定し、水蒸気の逃げ道に違いがあるの かを確認することとした。同時に、前節と同様な水酸化カルシウム量の定量を実施し、段 階的な温度の違いによる水酸化カルシウムの脱水分解に違いが生じるのか確認することと した。

そこで、本節では、加熱なし、300℃、および 600℃加熱した供試体を用いて、耐火試験 前後における実際の通気率を測定することで、耐火時の水蒸気の逃げ道が確保されていた のか確認を行うことと、水酸化カルシウム量の違いが生じているのか確認することとした。 使用材料は、前節の7.5節に使用した材料を用いた。

使用物料は、削即の7.3即に使用した物料を用い7

7.6.2 実験水準

実験水準を表-7.21 に示す。前節において、コンクリートでの耐火性能の検証である PP 繊維の有無による耐火性の確認を目的としたステップ 1,およびシングルミクロン混和材料 の同一置換率での耐火性の評価を目的としたステップ 2 の合計 6 水準を対象とした。

水準 No.	W/B	DN/B	SP/B	PP	単	単位量(kg/m							
(種類-置換率)	(%)	(%) (%)		(vol%)	W	В	S	G					
BF1.8-20			1.05	-			600						
FA3.0-20	175		1.40	-			577						
FA1.5-20		0.02	1.30	-			579						
FA0.9-20	17.5	0.03	1.25	-	150	857	584	868					
SF0.4-15			2.30	-			569						
SF0.4-15PP			2.90	0.2			569						

表-7.21 実験水準

7. 6. 3 練り混ぜ方法

練り混ぜ方法は、前節のステップ2(コンクリート)と同様とした。

7.6.4 実験項目と評価方法

(1) 通気率

通気率の評価は、JISA 2115「耐火物の通気率の試験方法」に準拠して測定を行った。供 試体の大きさは、 ϕ 100×40mm とした。前節の耐火試験体と同一の条件とし、材齢 28 日 まで封かん養生を行った。

通気する気体は空気とした。通気率を測定する試験体の条件として,加熱なし,300℃,および 600℃の3条件とした。なお,昇温速度は 600℃/h,最高温度の保持時間はそれぞれ1時間保持し,その後は自然冷却を行った。

以下に, 通気率の試験手順を示す。

- ② φ100×200mmの供試体の中央部付近から厚さ40mmとなるように3個の試験体 を乾式カッターにて切断し,採取する。切断後の試験体の厚さ h, 直径 d, 重さを 測定する。
- ③ 写真-7.6 に示すように、1水準3本の試験体を通気率測定試験機に配置する。
- ④ 水を張ったボールなどの容器にメスシリンダーをセットし、120 秒間通気を行い、 通気される空気の量 q_rの測定を行う。
- 5 通気率 µは, 7.4 式により算出した。

$$\mu = c \cdot \eta \cdot \frac{h}{3.14(\frac{d}{2})^2} \cdot \frac{1}{p_1} \cdot \frac{2(p_0 + p_1)}{2p_0 + p_1} \cdot q_r$$
[7.4]

ここに,

- μ :測定試料の通気率 (m²)
- c :試験片寸法,圧力,ガス流量の計算単位への補正係数 (1/60×10⁻⁶)
- η :測定ガスの粘度 (Pa·s) (空気の場合, 18.22×10⁻⁶)
- *h* :試験片の高さ (mm)
- *d* :試験片の直径 (mm)
- *p*₀ :大気圧 (kPa)
- *p*₁ : ガス圧力計の読み (kPa)
- q_r : ガス流量 (cm³/min)

を意味する。

写真-7.6 通気率試験機

(2) 質量変化率

質量変化率は,通気率測定時の試験体を用いて,300℃,および600℃の時の質量変化率 Mを前節の7.1 式より算出した。

(3) 水酸化カルシウム量の定量

水酸化カルシウム量の定量は、前節の「7.5.5 実験項目と評価方法 (7)水酸 化カルシウム量の定量」と同様に測定した。

7. 6. 5 実験結果および考察

通気率,およびピーク面積比 I_{Ca(OH)2} / I_{Al2O3}と,前節の耐火実験結果を表-7.22 に,各水準の加熱温度と通気率との関係を図-7.16 に,各水準の加熱温度とピーク面積比 I_{Ca(OH)2} / I_{Al2O3}を図-7.17 に,耐火実験時の質量変化率と通気率との関係を図-7.18 に示す。

表-7.22 より, SF0.4-15 の加熱 600℃の水準は, 爆裂し, 通気率の測定ができなかった。 一方で, SF0.4-15PP は, 加熱 600℃の水準でも通気率を測定することができた。加熱 300℃ の条件においても, PP 繊維を混和した水準の方が, 通気率が大きいため, PP 繊維の混和 により, 加熱時の蒸気圧を有効に緩和していると考えられる。図-7.16 より, 通気率は, 加 熱なしの条件では通気率が 0%であったが, 加熱 300℃, 600℃と温度が高くなるほど通気 率は大きくなった。加熱 600℃の通気率は, BF1.8-20, SF0.4-15PP, FA3.0-20, FA0.9-20, FA1.5-20, および SF0.4-15 の順で大きな値となり, 通気率が大きいほど, 耐火試験時の質 量変化率は減少し, 耐火性は向上した。

表-7.22, および図-7.17 より, ピーク面積比 I_{Ca(OH)2} / I_{Al2O3} は,加熱温度が高くなるほど 減少することが分かった。加熱なしの水準のピーク面積比 I_{Ca(OH)2} / I_{Al2O3} は,BF1.8-20 の水 準が一番小さいが,加熱 300°C,および 600°Cと温度が上昇した際の変化量がほぼ同等の傾 きであることから,それぞれの水準からの水酸化カルシウムの分解量は同程度であると推 測される。

図-7.18 より,通気率と耐火実験時の質量変化率の相関は,加熱 300℃より,600℃の方 が高いことが判断できる。水酸化カルシウムの分解温度が約 400~500℃であるため,加熱 600℃の通気率は,水酸化カルシウムの分解後の通気率である。つまり,コンクリートの水 酸化カルシウム量の分解量は同程度であると考えられる。そのため,耐火性が向上した理 由としては,水蒸気の蒸発を緩和する細孔構造へ変化している要因が大きいと考えられる。

水准 Na	7.	5 節耐火実験テ	ータ	通気率	₫ (×10-	$^{15} m^2)$	Ic	$I_{Ca(OH)} / I_{Al2O3}$					
/八平 INO. (含水率	質量変化率	$I_{Ca(OH)}$	加熱	300°C	600°C	加熱	300°C	600°C				
(恒凉 直伏十)	(%)	(%)	$/ I_{Al2O3}$	なし	300 C	000 C	なし	300 C	000 C				
FA0.9-20	3.4	49.8	0.49	0.00	0.13	1.39	0.79	0.76	0.36				
FA1.5-20	3.3	74.5	0.47	0.00	0.20	0.87	0.82	0.61	0.45				
FA3.0-20	3.5	34.3	0.59	0.00	0.10	1.55	0.81	0.67	0.42				
BF1.8-20	3.1	15.6	0.36	0.00	0.54	3.16	0.70	0.63	0.23				
SF0.4-15	3.3	100	0.63	0.00	0.05	爆裂	0.84	0.61	0.38				
SF0.4-15PP	3.1	20.4	-	0.00	0.32	2.11	-	-	-				

表-7.22 通気率,およびピーク面積比 I_{Ca(OH)2} / I_{Al2O3}と,前節の耐火実験結果

図-7.16 各水準の加熱温度と通気率との関係

図-7.17 各水準の加熱温度とピーク面積比 ICa(OH)2 / IA12O3 との関係

ここで,BF1.8-20の水準は,水和反応初期に水分が消費されて,材齢28日の時点では, ほかの水準と比べて,蒸発する水分が少なかった可能性なども考えられたため,BF1.8を混 和材料として用いた場合,水分が抜けやすい構造となっているのか水分の蒸発量である質 量変化率に着目して考察を行った。

通気率試験の加熱 300℃,および 600℃の質量変化率と,通気率試験に用いた試験体の強 熱減量を測定した。強熱減量の測定は、スラグ微粉末の質量の増加を考慮し、700℃で 1 時 間とした。また、コンクリートの骨材による影響も考えられたため、ペースト試料におい ても、同様の測定を実施した。なお、ペースト試料は、表-7.21 に示したコンクリート配合 の骨材を除いた配合とし、耐火実験と同様に材齢 28 日まで封かん養生を行った試料を用い た。これらの試験結果を表-7.23 に、本節で使用した骨材の加熱なし、加熱 300℃,および 600℃の条件での回折 X 線分析装置によって結晶相の同定を行った結果を図-7.19 に、ピー ク面積比 I_{Ca(OH)2} / I_{Al2O3}を算出する際に、回折 X 線分析装置によって結晶相の同定を行った 結果を図-7.20 に、ペースト硬化体の加熱 200℃における質量変化率を図-7.21 に示す。

ペースト試料の質量変化率は、 ϕ 50×50mmの大きさにて、それぞれの加熱温度を1時間としたが、F0.4-15は、加熱300、600°C、FA0.9-20、FA1.5-20、SF0.4-15PPは、加熱600°Cの条件で爆裂し、各水準の質量変化率の比較ができなかった。そのため、加熱温度は200°Cとし、加熱時間を1、3、および6時間の質量変化率を測定した。

表-7.21 より、コンクリート試料の加熱なしの強熱減量、およびペースト試料の加熱なしの強熱減量がすべての水準においてほぼ同等の値であることから、硬化体として保有している水分量は同等である。コンクリート試料の加熱 300℃、600℃の通気率試験時の質量変化率は、BF1.8-20 が一番大きく、SF0.4-15, または SF0.4-15PP が一番小さいことから、

構造体から水分が抜けていないことが分かる。これは、300℃、600℃の通気率試験試料を 粉末にした場合の強熱減量が、BF1.8-20 が一番小さい値を示したことからも、BF1.8-20 の 水準が水分の蒸発が一番多いと判断できる。

		コ	ンクリート		ペースト	試料					
水準 No.	通気率調	式験時の	通気率試	験試料を	粉末にし	質量変	变化率	強熱減量			
(種類-置換率)	質量変化	公率(%)	た場合の)強熱減量	(%) *	(%	6)	(%) *			
	300°C	600°C	加熱なし	300°C	600°C	300°C	600°C	加熱なし			
FA0.9-20	2.9 5.8		6.6	5.3	4.5	5.0	爆裂	14.9			
FA1.5-20	4.1 5.8		6.5	5.0	4.7	5.2	爆裂	14.5			
FA3.0-20	3.7	5.8	6.2	5.1	4.1	7.7	13.9	14.0			
BF1.8-20	5.4	7.3	6.4	4.6	2.7	7.1	14.3	14.2			
SF0.4-15	1.8	爆裂	6.7	5.1	4.6	爆裂	爆裂	14.4			
SF0.4-15PP	2.0	4.9	-	-	-	7.1	爆裂	-			

表-7.21 各試料における質量変化率と強熱減量

※700℃1 時間の条件で測定

ここで,図-7.19は,本節で使用した骨材のスメクタイトのピークを同定した結果である。 スメクタイトは,層状の膨張性粘土鉱物の一種⁴⁾であり,加熱処理により[001]面の結晶 面間隔は,15Åから9.5Åに収縮する⁵⁾。つまり,加熱処理により,スメクタイトの層状の 間に埋められていた水などが脱水し,結晶面間隔が小さくなる。図-7.19より,スメクタイ トのピーク位置は,加熱なしでは,6°であるが,加熱 300℃,600℃と加熱温度を高くす ると,9~10°付近の広角側へシフトし,結晶面間隔が収縮していることが分かる。

っぎに、図-7.20は、通気率試験に用いた試験体を粉体した試料により、鉱物の同定を行った結果である。図-7.20に示した破線は、通気率の加熱なしの試料を粉末状にしてから、300℃、または600℃の温度で1時間加熱した結果である。図-7.20より、加熱なし(20℃)で同定されたスメクタイトのピークは、BF1.8-20では、300℃と600℃ではピークが確認できなくなっているのに対し、SF0.4-15では、600℃の加熱でもそのピークは変化せずに確認されている。粉末状にして加熱を行った破線の結果は、6°のピークが確認できなくなっている。つまり、SF0.4-15の水準は、骨材の鉱物に存在する水分の蒸発もしにくい細孔構造になっていると推察された。図-7.20の結果より、シングルミクロン高炉スラグ微粉末、シングルミクロンフライアッシュ、およびシリカフュームの順で、水分が蒸発しやすい構造体となっていることが判断された。

図-7.19 温度による骨材のスメクタイトのピーク位置の変化

図-7.20 コンクリート試料の加熱温度の違いによる骨材中のスメクタイトの変化

しかしながら,骨材の種類が異なれば,スメクタイトのような層状鉱物が存在せずに,水分の蒸発のしやすさが異なる可能性も考えられる。そこで,最後にペーストの質量変化率の比較を行った。表-7.21 に加熱 300°C,および 600°Cの質量変化率の測定を行ったが,爆裂試料が多く,ペーストとしての質量変化の違いを測定することができなかった。そこで,爆裂をしない 200°Cの温度で加熱時間を変更した結果が,図-7.21 に示す結果である。 図-7.21 より,加熱時間が長くなるにつれて質量変化率は大きくなった。PP 繊維を混和していない水準の加熱 6 時間では,BF1.8-20,FA3.0-20,FA1.5-20,FA0.9-20,および SF0.4-15の順で質量変化率が大きくなった。実際の爆裂する温度による質量変化率ではないが,BF1.8-20 の細孔構造は,SF0.4-15 の細孔構造より,水分の蒸発はしやすい細孔構造になっていると考えられる。

シングルミクロン高炉スラグ微粉末を用いた場合,加熱により,このような水分の蒸発 がしやすい構造になるメカニズムは不明である。例えば,高炉スラグ微粉末とフライアッ シュやシリカフュームとの反応形態の違い,主要化学成分の割合の違い,線膨張係数は高 炉スラグ微粉末の方が大きいと考えられるので,その膨張量の違いなどの要因が考えられ る。このメカニズムの解明については,今後の課題である。

以上のことより,シングルミクロン高炉スラグ微粉末を用いた場合の耐火性が向上する 理由としては,水分の蒸発がしやすい構造に変化していることが大きい要因であることが 分かった。

図-7.21 ペースト硬化体の加熱 200℃における質量変化率

7.7 まとめ

7.2節では、ダイラタンシー性状の緩和について、高強度コンクリートにおけるシング ルミクロン混和材料の有効性の検証を行った結果、以下の知見を得た。

- (1) 実際のコンクリートの作業者による作業性の経験的なダイラタンシー性状の定性 的な評価は、引張抵抗値試験を行うことで、定量的に、精度よく評価が可能であ る。
- (2) コンクリートにおいても、ダイラタンシー性状の緩和には、1µm より小さい領域 の粒径の粒子が必須な粒径である。

7.3節では、本研究で開発した異なる粒径のシングルミクロン混和材料のダイラタンシー性状の緩和に着目した最適置換率の検証をモルタルにて実施した結果、以下の知見を得た。

- (3) シングルミクロン混和材料の粒径が小さいほど、その置換率は少なくても、ダイ ラタンシー性状や生産性がシリカフュームを用いた場合の高強度コンクリートと 同等以上にできる。
- (4) ダイラタンシー性状の改善,または作業性の改善の観点に着目した場合のシング ルミクロン混和材料の最適と思われる置換率を把握し,その結果を表-7.13 にまと めた。

7.4節では,実運用でも適用可能と考えられるシングルミクロン混和材料の配合において,高強度コンクリートとしてのフレッシュ性状や硬化性状の把握を行った結果,以下の知見を得た。

- (5) 流動性や充填性は従来のシリカフュームを使用した高強度コンクリートと同等以 上の性能がある。
- (6) シングルミクロンフライアッシュを用いた場合,粒径の大小に関わらず,20℃水 中養生の圧縮強度は、シリカフュームを使用した場合と同等の強度となる。
- (7) シングルミクロン高炉スラグ微粉末を用いた場合、シリカフューム、または、同 粒径のシングルミクロンフライアッシュを用いた場合より、約 10N/mm²大きく なる。
- (8) 蒸気養生の圧縮強度は、シリカフュームを用いた場合と同等以上となり、プレキャストコンクリートにシングルミクロン混和材料を適用しても、同等以上の強度が得られる。
- (9) 自己収縮は、シングルミクロン高炉スラグ微粉末を用いた水準のみ、100µm 程度

第7章 高強度コンクリートでのシングルミクロン混和材料の性能検証

収縮が大きい傾向となったが、この程度のひずみ量であれば、無水石こうあるは、 膨張材との併用で緩和できる領域のひずみ量である。シングルミクロンフライア ッシュを用いた場合、シリカフュームを用いた場合と同程度の収縮量となる。

(10) シングルミクロン混和材料の高強度コンクリートにおける流動性や作業性のフレ ッシュ性状、および圧縮強度や収縮の硬化特性は、実用的に用いられているシリ カフュームを用いた場合の高強度コンクリートと比べても、同等以上の性能を有 する。

7.5節では、本研究で開発した異なる粒径のシングルミクロンフライアッシュ、および 高炉スラグ微粉末の耐火性能を検証した結果、以下の知見を得た。

- (11) モルタルでは、各混和材置換率が少なく、粒径の大きいほど、耐火性は改善され、 シングルミクロン高炉スラグ微粉末、粒径の大きなシングルミクロンフライアッ シュ、粒径の小さなシングルミクロンフライアッシュ、およびシリカフュームの 順で耐火性は良好となる。
- (12) コンクリートでも、シングルミクロン高炉スラグ微粉末、シングルミクロンフラ イアッシュ、およびシリカフュームの順で耐火性は改善された。しかし、粒径の 違いによる耐火性は確認できなかった。
- (13) 耐火試験前の硬化体の 0.1µm 以下の細孔直径の割合が少ないほど,水酸化カルシ ウム残存量が少ないほど,耐火性は良好となる。
- (14) 本研究で開発したシングルミクロン混和材料は、シリカフュームより耐火性は改善される。

7.6節では,耐火試験前後における実際の通気率を測定することで,耐火時の水蒸気の 逃げ道が確保されていたのか検証した結果,以下の知見を得た。

- (15) 加熱 300℃, 600℃と温度が高くなるほど通気率は大きくなり, 通気率が大きいほど, 耐火試験時の質量変化率は減少し, 耐火性は向上した。
- (16) 耐火性が向上した理由としては,水蒸気の蒸発を緩和する細孔構造へ変化してい る要因が大きい。
- (17) シングルミクロン高炉スラグ微粉末、シングルミクロンフライアッシュ、および シリカフュームの順で、水分が蒸発しやすい構造体となっている。

参考文献

- 高野智宏ほか:高温加熱を受ける高強度繊維補強コンクリートの耐火性能について、土 木学会論文集 E, Vol.63, No.3, pp.424-436, 2007.7
- 2) 井元晴丈ほか:混合セメントの水和反応解析, コンクリート工学年次論文集, Vol.25, No.1, pp.41-46, 2003.5
- 3) 李在英:高強度コンクリートの火災時の爆裂現象における空隙圧力と熱応力に関する実験的研究,博士論文,京都大学大学院,2016.3
- 4) 土居繁雄ほか:変質安山岩質骨材に含まれているスメクタイトの性状,土木学会論文集, No433/V-15, pp.61-70, 1991.8
- 5) 下田(1985)による『粘土鉱物研究法』(pp.47-117) http://earthresources.sakura.ne.jp/er/Min_XRD_NK_01.html

第8章

結論

8.	1	はじめに・・・・・・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 206
8.	2	第1章および第2章の概要	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 207
8.	3	第3章で得られた知見・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 207
8.	4	第4章で得られた知見・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 209
8.	5	第5章で得られた知見・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 209
8.	6	第6章で得られた知見・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 210
8.	7	第7章で得られた知見・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 210

8.1 はじめに

近年の時代背景より,生コンクリートなどの現場施工からプレキャスト製品化を推奨し ており,プレキャスト製品の高機能化や生産性などの向上が求められている。また,維持・ 補修管理の時代へシフトしている観点からも維持補修関係に用いられるモルタル材料につ いて,工期短縮を目的とした材料面の早強性や耐久性向上などの性能向上が求められてい る。それに加えて,地球温暖化対策の観点からは,二酸化炭素排出量削減が地球規模での 課題である。そのため,環境負荷低減を目的とした産業廃棄物や副産物の積極的利用も推 進されている。

工期短縮を目的とした材料面の早強性改善については,水結合材比の低減などの手法が あるが,水結合材比の低減により,練り混ぜ時間や練り混ぜ負荷の増加(生産効率の低下) や,作業性悪化などの課題もある。この課題を解決する手法として,サブミクロン領域の シリカフュームを用いることが一般的である。しかしながら,日本国内で使用されている シリカフュームは,海外からの輸入がほとんどで,安定供給面で不安が多い。また,シリ カフュームは,メタシリコンやフェロシリコンを製造する際の副産物として発生するため, 品質のバラツキが大きく,その品質管理に手間を要する。そのうえ,海外からの輸入品で あることなどから,コンクリート用の混和材料として使用する際のコスト面でも,比較的 高価な混和材料である。

その他のコンクリート用混和材料として用いられる無機材料としては、高炉スラグ微粉 末やフライアッシュが一般的である。しかしながら、高炉スラグ微粉末やフライアッシュ をコンクリート用混和材料として使用する場合、ポルトランドセメントと同程度の粉末度 (平均粒形で 10~20µm 程度)の領域で混和することが多い。そのため、高炉スラグ微粉 末やフライアッシュをシリカフュームと同様な効果が得られる活用方法を考える必要があ った。また、セメントとシリカフュームの中間的な粒径のシングルミクロン領域の粒径を 有する混和材料がほとんどないことから、シングルミクロン領域の粒径を有する混和材料 を開発することで、補修関連のモルタル材料やコンクリートに高機能化が得られる可能性 も考えられた。

低水結合材比のモルタルやコンクリートにおける技術的な課題として、ワーカビリティ ーやポンプ圧送性などが挙げられる。例えば、化学混和剤の添加により、流動性は向上す るが、目視や V 漏斗などの流動性評価手法では軟らかいと感じられたモルタルやコンクリ ートでも、実際に練り返しなどを行うと、変形の与え方によっては、瞬間的に固体化し、 閉塞や充填不良などの問題が発生する場合がある。これは、高濃度サスペンションである フレッシュコンクリートのせん断抵抗の大小により発生しており、その大部分が固体粒子 間の接触や摩擦に起因したものと考えられる。その挙動は、レオロジー的には、せん断ひ ずみ速度の変化に伴うせん断応力の一時的な増加である「ダイラタンシー性状」に起因す るものである。ここで、ダイラタンシー性状の緩和手法としては、シリカフュームなどの 超微粉末の混和などによる充填性の向上が有効であると報告されているが、多くは、経験 則によるものである。そのため、どのような粉体特性、粒径、あるいは粒度分布の微粉末 材料をどの程度混和すれば、ダイラタンシー性状を緩和できるのか知見がほとんどない現 状であった。

そのため、本研究では、シングルミクロン粒径を有する高炉スラグ微粉末、およびフラ イアッシュを用いたモルタル・コンクリートの諸特性に関する開発研究を行った。また、 低水結合材比の領域でのダイラタンシー性状の発生因子について解明を行うとともに、シ リカフュームと同様にダイラタンシー性状を緩和するシングルミクロン混和材料の最適と 考えられる粒径や置換率などの条件についての研究も同時に実施し、以下に示す手順によ り本研究を行った。

本論文は、第1章から第8章で構成されている。シングルミクロン領域の粒径を有する 高炉スラグ微粉末、およびフライアッシュの基本特性を把握し、低水結合材比におけるダ イラタンシー性状の発生要因の特定、その簡易的評価手法の提案、およびシングルミクロ ン混和材料の活用方法の提案を行った。また、基本特性の把握実験から、今後のシングル ミクロン領域の高炉スラグ微粉末の用途拡大に向け、シングルミクロン高炉スラグ微粉末 の乾燥収縮が、粒径の割に低減できるメカニズムの解明を行った。次に、開発されたシン グルミクロン高炉スラグ微粉末のアプリケーションとしてのモルタルでの性能検証を行い、 実モルタル製品の課題の解決と性能検証を実施した。最後に、シングルミクロン混和材料 のコンクリートでのフレッシュ性状、硬化特性、耐火性能といった各種性能の確認を実施 し、高強度コンクリートでのシングルミクロン混和材料の適用の検証を実施した。

8.2 第1章および第2章の概要

第1章「序論」では,産業副産物である高炉スラグ微粉末とフライアッシュを用いたシ ングルミクロン領域の粒径を有する混和材料に期待される各種性状に関する社会的および 技術的な背景,および研究の目的を記述した。

第2章「本研究に関する既往の研究」では、本研究に関連したダイラタンシー性状、微 粉末混和材料などの既往の研究について記述した。

8.3 第3章で得られた知見

第3章「シングルミクロン高炉スラグ微粉末およびフライアッシュの基本特性」では, シングルミクロン混和材料の基本特性の把握を行った。日本国内で多量に発生する産業副 産物である高炉スラグ微粉末およびフライアッシュに着目し,これまであまり知見の得ら れていないレベルである $D_{50}=3.5\pm0.5\mu m$,および $D_{50}=1.5\pm0.5\mu m$ の粒径まで超微粉末 化を行い,超微粉末領域の混和材の基本特性をモルタルレベルで研究を行い,モルタル材 料やコンクリートにおいて各種性能向上の可能性について総合的に評価した結果,以下の 知見を得た。

(1) フレッシュ性状として、高性能減水剤添加率を比較した場合、シングルミクロンの

高炉スラグ微粉末,またはフライアッシュを用いた方が,シリカフュームと比較す ると,半分程度の高性能減水剤添加量で同一フロー値が得られるため,混和剤使用 量を低減できる。

- (2) 粘性(ダイラタンシー性)は、高炉スラグ微粉末、またはフライアッシュを用いた 場合、シリカフュームと比較すると、粘性が大きくなり、シリカフュームと同様の 作業性は得られないが、D₅₀=1.5±0.5µmの粒径で、その置換率が30%とした場合、 ダイラタンシー性の改善効果が得られる。
- (3) 圧縮強度は、D₅₀=3.5±0.5µm、または D₅₀=1.5±0.5µm の粒径の高炉スラグ微粉 末を 30~50%程度をセメントに対して内割置換した場合、強度改善効果は大きい。 とくに、D₅₀=1.5±0.5µm の粒径の高炉スラグ微粉末を 30%置換した場合の材齢初 期の1日から7日に関しての強度発現性の改善効果が大きい。D₅₀=1.5±0.5µm の 粒径の高炉スラグ微粉末を補修モルタル材の混和材として用いた場合、更なる脱型 の早期化の可能性が考えられるため、補修モルタル材料の生産性向上に関して、D₅₀ =1.5±0.5µm の粒径の高炉スラグ微粉末は、有用な混和材である。一方で、シリカ フュームと同様のポゾラン反応を有するフライアッシュは、材齢初期において、シ リカフュームと同等の強度発現性は確認できなかったが、長期材齢では、シリカフ ュームと同程度の強度発現性が得られる。そのため、更なる小径化が必要である。
- (4) 乾燥収縮は、D₅₀=1.5±0.5µm の粒径の高炉スラグ微粉末を用いた水準とフライア ッシュは全ての水準で、シリカフュームを用いた場合より、乾燥収縮は改善できる。 これは、補修モルタル材料や高強度コンクリートの耐久性の観点からは、有用な混 和材である。
- (5) 自己収縮は、D₅₀=1.5±0.5µmの粒径の高炉スラグ微粉末を30%置換した場合とフ ライアッシュは全ての水準で、シリカフュームを用いた場合より、自己収縮は改善 できる。これは、乾燥収縮同様に、補修モルタル材料や高強度コンクリートの耐久 性の観点からは、有用な混和材である。
- (6) 促進中性化の観点からの耐久性は、D₅₀=3.5±0.5µm、および D₅₀=1.5±0.5µm の 粒径の高炉スラグ微粉末は全ての水準、D₅₀=3.5±0.5µm、および D₅₀=1.5±0.5µm の粒径のフライアッシュは 30%の置換率を上限とすれば、シリカフュームを用いた 場合と同等の耐久性が得られる。
- (7) 遮塩性は、D₅₀=3.5±0.5µm、および D₅₀=1.5±0.5µm の粒径の高炉スラグ微粉末 は全ての水準、D₅₀=3.5±0.5µm、および D₅₀=1.5±0.5µm の粒径のフライアッシ ュは 30%の置換率を上限とすれば、シリカフュームを用いた場合と同等の耐久性が 得られる。
- (8) 高炉スラグ微粉末,およびフライアッシュともに、粒径が小さいほど、かつ置換率が小さいほど、フレッシュ特性、および硬化特性などの総合評価は良好となる。
- (9) 高炉スラグ微粉末,およびフライアッシュの粒径は,D₅₀=1.5µm 程度の粒径,置換

率は30%以下で使用することを推奨する。

8.4 第4章で得られた知見

第4章「低水結合材比におけるダイラタンシー特性」では,低水結合材比における課題 の一つであるワーカビリティーの低下やポンプ圧送性の悪化などの原因として考えられて いるダイラタンシー性状の発生因子の特定を行うとともに,最適と考えらえる配合の検討 と,現場レベルでの簡易的なダイラタンシー性状の定量評価手法の検討を行った結果,以 下の知見を得た。

- (1) ダイラタンシー性状の発生因子として,混和材料の粉体特性である濡れ性,および 粒子形状の影響は低い。
- (2) ダイラタンシー性状の発生には,結合材の粒度分布の影響が大きく,とくに 1µm より小さい粒径の粒子を混和することが重要である。
- (3) 粒径が 1µm 以上の領域では,母体セメントより単一粒径の割合が大きくなるとダイ ラタンシー性状が顕著に発生する。
- (4) 粒径が 1µm より小さい領域の粒子は, その割合が増加してもダイラタンシー性状は 発生せず, 1µm より小さい領域の粒子は, ダイラタンシー性状の緩和に必須な粒径 である。
- (5) ダイラタンシー性状を緩和する最適な粒径、および置換率として、D₅₀=1.5±0.5μm 程度の混和材料を用いる場合は、20~30%の置換率が最適であり、D₅₀=1.0μmより 小さい粒子の場合は、10~20%の置換率が最適である。
- (6) ダイラタンシー性状の簡易的な定量評価方法としては、引張抵抗値による評価が妥当である。貫入抵抗値による評価も、抵抗断面積の増加など貫入抵抗値を大きく評価するための測定方法の検討により、簡易的定量評価が可能である。

8.5 第5章で得られた知見

第5章「シングルミクロン高炉スラグ微粉末の乾燥収縮」では,第3章で得られた知見 である粉末度の割に収縮が小さい理由について,高炉スラグ微粉末の細孔構造に着目し, メカニズムの解明を行った結果,以下の知見を得た。

- (1) 同一粒径の場合,BET 比表面積の小さい高炉スラグ微粉末を用いた方が,乾燥収縮 は小さくなり,質量変化率(水分の蒸発)は大きくなる。
- (2) 同一粒径の場合, BET 比表面積の異なる高炉スラグ微粉末は, 硬化体の細孔構造(細 孔径分布)に大きく影響を与え, BET 比表面積の小さい高炉スラグ微粉末を用いた 方が, 乾燥収縮への寄与率が低いとされる 30nm より大きい細孔容積の割合が多く なる。
- (3) 同一粒径の場合,既往の研究と同様に毛細管張力の影響により,30nm 以下の細孔 直径の割合が多い硬化体の方が,硬化体の乾燥収縮は大きくなる。

- (4) BET 比表面積が同程度の場合,粒径が小さい高炉スラグ微粉末の方が,30nm 以下の細孔径分布は多くなる。
- (5) BET 比表面積が同程度の場合,粒径の小さい高炉スラグ微粉末の方が,質量変化率 は小さく,乾燥収縮も小さくなる。
- (6) BET 比表面積が同程度の場合,粒径の小さい高炉スラグ微粉末の方が,乾燥収縮に 影響を与える毛細管張力が大きい 30nm 以下の空隙の割合が多いが,水分の蒸発が しにくい構造であるため,乾燥収縮が改善できる。これは,ペースト組織構造の緻 密さの向上,圧縮強度や高炉スラグ反応率が大きいことによる組織の毛細管張力に 対する抵抗性の向上などによる。
- (7) BET 比表面積は小さい高炉スラグ微粉末ほど,乾燥収縮も低減できたため,粒径が 小さくても,BET 比表面積の小さい高炉スラグ微粉末の細孔構造とすることで,乾 燥収縮は低減できる。

8.6 第6章で得られた知見

第6章「シングルミクロン高炉スラグ微粉末の実モルタル製品への適用」では、シング ルミクロン高炉スラグ微粉末の基本特性から得られた各種性状の可能性について、従来の モルタル製品に使用されていないシングルミクロン高炉スラグ微粉末を用いた実モルタル 製品への適用の検証と同時に、従来のモルタル製品の課題の解決と性能向上について検証 を行った結果、以下の知見を得た。

- (1) モルタル注入材料では、流動性および初期強度発現性は向上し、実部材での注入性 状も良好となり、ひび割れの発生もなく、シングルミクロン高炉スラグ微粉末のモ ルタル注入材料への適用は、各種性能向上に繋がる。
- (2) 左官モルタル塗り材料では、流動性を調整するための混和剤使用量を大幅に低減し、 初期強度の向上、乾燥収縮の低減、耐硫酸性の向上を確認した。実施工を想定した コテ塗り性も良好で、硬化後のダレや剥がれなども確認されず、左官モルタル塗り 材料の性能向上に繋がる。

8.7 第7章で得られた知見

第7章「高強度コンクリートでのシングルミクロン混和材料の性能検証」では、本研究 で開発したシングルミクロン高炉スラグ微粉末およびフライアッシュについて、高強度コ ンクリートでの検証を実施した結果、以下の知見を得た。

- (1) 実際のコンクリートの作業者による作業性の経験的なダイラタンシー性状の定性的 な評価は、引張抵抗値試験を行うことで、定量的に、精度よく評価が可能である。
- (2) コンクリートにおいても、ダイラタンシー性状の緩和には、1µm より小さい領域の 粒径の粒子が必須な粒径である。
- (3) シングルミクロン混和材料の粒径が小さいほど、その置換率は少なくても、ダイラ

タンシー性状や生産性がシリカフュームを用いた場合の高強度コンクリートと同等 以上にできる。

- (4) ダイラタンシー性状の改善,または作業性の改善の観点に着目した場合のシングル ミクロン混和材料の最適と思われる置換率を把握し,その結果を**表-7.13**にまとめた。
- (5) 流動性や充填性は従来のシリカフュームを使用した高強度コンクリートと同等以上 の性能がある。
- (6) シングルミクロンフライアッシュを用いた場合,粒径の大小に関わらず,20℃水中 養生の圧縮強度は,シリカフュームを使用した場合と同等の強度となる。
- (7) シングルミクロン高炉スラグ微粉末を用いた場合、シリカフューム、または、同粒径のシングルミクロンフライアッシュを用いた場合より、約10N/mm²大きくなる。
- (8) 蒸気養生の圧縮強度は、シリカフュームを用いた場合と同等以上となり、プレキャストコンクリートにシングルミクロン混和材料を適用しても、同等以上の強度が得られる。
- (9) 自己収縮は、シングルミクロン高炉スラグ微粉末を用いた水準のみ、100µm 程度収縮が大きい傾向となったが、この程度のひずみ量であれば、無水石こうあるは、膨張材との併用で緩和できる領域のひずみ量である。シングルミクロンフライアッシュを用いた場合、シリカフュームを用いた場合と同程度の収縮量となる。
- (10) シングルミクロン混和材料の高強度コンクリートにおける流動性や作業性のフレッシュ性状、および圧縮強度や収縮の硬化特性は、実用的に用いられているシリカフュームを用いた場合の高強度コンクリートと比べても、同等以上の性能を有する。
- (11) モルタルでは、各混和材置換率が少なく、粒径の大きいほど、耐火性は改善され、 シングルミクロン高炉スラグ微粉末、粒径の大きなシングルミクロンフライアッシュ、粒径の小さなシングルミクロンフライアッシュ、およびシリカフュームの順で 耐火性は良好となる。
- (12) コンクリートでも、シングルミクロン高炉スラグ微粉末、シングルミクロンフライ アッシュ、およびシリカフュームの順で耐火性は改善された。しかし、粒径の違い による耐火性は確認できなかった。
- (13) 耐火試験前の硬化体の 0.1µm 以下の細孔直径の割合が少ないほど,水酸化カルシウム残存量が少ないほど,耐火性は良好となる。
- (14) 加熱 300℃, 600℃と温度が高くなるほど通気率は大きくなり, 通気率が大きいほど, 耐火試験時の質量変化率は減少し,耐火性は向上し,耐火性が向上した理由として は,水蒸気の蒸発を緩和する細孔構造へ変化している要因が大きい。
- (15) シングルミクロン高炉スラグ微粉末、シングルミクロンフライアッシュ、およびシ リカフュームの順で、水分が蒸発しやすい構造体となっており、本研究で開発した シングルミクロン混和材料は、シリカフュームより耐火性は改善される。

本論文に関わる研究報告

査読付き論文

- 藤原 了、二戸 信和、久保田 賢、藤原 浩已:フライアッシュ超微粉末の高強度コンクリート混和材への適用に関する研究、コンクリート工学年次論文集、Vol.40、No.1、 pp.1197-1202, 2018
- 2)藤原 了,二戸 信和,久保田 賢,藤原 浩已:フライアッシュ超微粉末を用いた高 強度コンクリートの流動性および収縮特性,コンクリート工学年次論文集,Vol.41, No.1, pp.1181-1186, 2019
- 3) 藤原 了,築地 優,富山 悟,藤原 浩已:各種超微粉末を用いた高強度コンクリートの耐火性能,コンクリート工学年次論文集,Vol.42,No.1, pp.1067-1072, 2020
- 4)藤原 了、二戸 信和、丸岡 正知、藤原 浩已:シングルミクロン高炉スラグ微粉末 を用いたモルタルの収縮特性の改善、セメント・コンクリート論文集、Vol.72、 pp.122-128, 2018
- 5)藤原 了,小菅 太朗,丸岡 正知,藤原 浩已:微粉末による耐硫酸性セメント系材 料の初期強度および耐硫酸性の改善,セメント・コンクリート論文集, Vol.73, pp.87-94, 2019
- 6)藤原 了,北川 陽介,蝦名 貴之,藤原 浩已:高炉スラグ超微粉末を用いたモルタ ル注入材料の開発と実部材への適用,プレストレストコンクリート工学会 第28回シン ポジウム論文集,pp.327-332,2019
- 7) 細貝 朱里,藤原 浩已,丸岡 正知,藤原 了:高炉スラグ微粉末を多量に含むモル タルのダイラタンシー性状および改善方法に関する検討,コンクリート工学年次論文集, Vol.41, No.1, pp.1055-1060, 2019
- 8)藤原 了,二戸 信和,山口 博之,藤原 浩已:シングルミクロン高炉スラグ微粉末 の細孔構造が硬化体の収縮に及ぼす影響,セメント・コンクリート論文集, Vol.74,投 稿中

口頭発表論文

- Satoshi FUJIWARA, Nobukazu NITO, Ken KUBOTA, Hiromi FUJIWARA : Fresh properties and Compressive strength of Ultra high strength mortar using fly ash finely powdered from single micron to submicron region, SECOND INTERNATIONAL INTERACTIVE SYMPOSIUM ON ULTRA-HIGH PERFORMANCE CONCRETE, ALBANY, NEW YORK, June 2-5, 2019
- 2) Satoshi FUJIWARA, Nobukazu NITO, Takayuki EBINA, Ken KUBOTA, Hiromi FUJIWARA: Compressive strength and shrinkage characteristics of mortar using ground granulated blast furnace slag finely powdered in the single micron region, 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, September 16-20, 2019
- 3) 藤原 了,小菅 太朗,二戸 信和,藤原 浩已:高炉スラグ超微粉末を用いたモルタ ルの圧縮強度および収縮特性,セメント協会,第72回セメント技術大会講演概要集, pp.242-243,2018
- 4)藤原 了,小菅 太朗,二戸 信和,藤原 浩已:微粉末による耐酸性セメント系材料の初期強度および耐硫酸性の改善、セメント協会、第73回セメント技術大会講演概要 集,pp.166-167,2019
- 5) 藤原 了, 蝦名 貴之, 久保田 賢, 藤原 浩已:細孔構造の異なる高炉スラグ超微粉 末を用いたモルタルの収縮特性, セメント協会, 第 74 回セメント技術大会講演概要集, pp.202-203, 2020
- 6)藤原 了,阿部 竜也,二戸 信和:高炉スラグ超微粉末を用いたモルタルの強度および収縮特性,土木学会,第72回年次学術講演会,pp.711-712,2017
- 7)藤原 了,小菅 太朗,二戸 信和,藤原 浩已:シングルミクロン高炉スラグ超微粉 末を用いたモルタルの初期養生条件の異なる収縮特性の検討,土木学会,第73回年次 学術講演会,pp.405-406,2018
- 8) 藤原 了,二戸 信和,久保田 賢,藤原 浩已:高炉スラグ超微粉末を用いた低水結 合材比ペーストのダイラタンシー性改善に関する一考察,土木学会,第74回年次学術 講演会,V-19,2019

- 9) 藤原 了,三石 歩,二戸 信和,藤原 浩已:各種超微粉末を用いた高強度コンクリ ートの耐火性能改善に関する一考察,土木学会,第75回年次学術講演会,V-06,2020
- 10) 帖佐 智之,藤原 了,二戸 信和,藤原 浩已:シングルミクロン高炉スラグ微粉 末を用いたモルタルの遮塩性および低温時の強度特性,土木学会,第74回年次学術講 演会,V-20, 2019
- 11) 小菅 太朗,藤原 了,二戸 信和,久保田 賢:高炉スラグ超微粉末およびフライ アッシュ超微粉末を用いたモルタルの耐硫酸性,土木学会,第 74 回年次学術講演会, V-21, 2019
- 12) 小菅 太朗, 築地 優, 藤原 了, 二戸 信和:高炉スラグ超微粉末および高炉水砕 スラグ砂を用いたモルタルの耐酸性, 土木学会, 第 75 回年次学術講演会, V-03, 2020
- 13)築地 優,小菅 太朗,藤原 了,二戸 信和:高炉スラグ超微粉末による耐酸性セメント系材料のコンクリートにおける性能確認,土木学会,第75回年次学術講演会, V-04,2020

特許出願

- 1) 特許第 6185681 号(P6185681)「高炉スラグ微粉末およびセメント組成物」
- 2) 特許第 6185682 号(P6185682)「高炉スラグ微粉末およびセメント組成物」
- 3) 特開 2019-34872(P2019-34872A)「セメント組成物」
- 4) 特開 2019-59662(P2019-59662A)「耐酸性セメント組成物」
- 5) 特開 2019-119647(P2019-119647A)「水硬性組成物」
- 6) 特開 2019-210178(P2019-210178A)「セメント組成物」

その他未公開特許1件

謝辞

本論文は,2017 年から 2020 年にかけて実施したシングルミクロン粒径を有する無機系 混和材料に関する研究成果を取りまとめたものであります。

本研究を取りまとめるにあたり,実験,および論文作製に協力して頂きました皆様に大 変感謝致します。

宇都宮大学 地域デザイン科学部長 社会基盤デザイン学科教授 藤原浩已博士には,指導 教官として,これまで終始懇切なご指導を賜りましたことに,心より絶大な謝意を表しま す。

本論文を作成するにあたり,有益なご教授を賜った宇都宮大学教授 杉山央博士,同池田裕一博士,ならびに准教授 丸岡正知博士,同藤倉修一博士に深く感謝致します。

本研究をとりまとめるにあたり,宇都宮大学大学院博士後期課程に入学することを容認 していただくとともに,懇親なご指導を頂いた(株)デイ・シイ 代表取締役社長 神長俊樹氏, 取締役常務執行役員 大澤聖二氏,取締役執行役員 久保田賢セメント事業本部川崎工場長 (当時,技術センター長),執行役員 山口博之技術センター長,工藤秀樹氏(当時,(株) デイ・シイ代表取締役社長)に深く感謝致します。

また,研究の遂行にあたり適切にご指導いただいた(株)デイ・シイ 技術センター副セン ター長 蝦名貴之博士,技術センター主査 二戸信和博士,川崎工場生産課長 須崎一定氏に 深謝致します。

(株)デイ・シイ 技術センター 技術開発課の小宮岳枝課長代理,富山悟主務,同課員帖佐 智之氏,小菅太朗氏,築地優氏,および三石歩氏には,モルタルおよびコンクリート試験 などさまざまな試験にご協力していただきました。この場を借りて御礼申し上げます。

本論文は,多くの方々のご指導,ご支援の結果,達成されたものであり,改めて感謝の 意を表す次第であります。

化学混和剤については、ポゾリスソリューションズ(株)から御支給を賜り、その使用方法 の詳細については、ポゾリスソリューションズ(株)の蓑宮芳和氏、松倉隼人氏、佐藤圭氏か ら多数の貴重なご助言を賜りました。心より感謝の意を表します。

最後に,どのような状況におかれましても応援してくれた素晴らしい家族である妻 美樹, 長女 小寧,長男 良多に心からの御礼を表して,謝辞と致します。

2021年3月