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ABSTRACT

The objectives of this study are to obtain information about basic wood properties of broad-leaved tree species which are
abundantly found in secondary forests in Japan to effectively utilize their wood resources. Growth characteristics (stem diameter
at 1.3 m above the ground and tree height), and stress-wave velocity of stems were measured in two broad-leaved trees species,
Castanea crenata Siebold et Zucc. and Magnolia obovata Thunb. naturally regenerated in a secondary forest. After harvesting
trees, dynamic Young's modulus of logs and basic wood properties (oven-dry density, modulus of elasticity [MOE], modulus of
rupture [MOR], and bending work) were determined. Mean stem diameter, tree height, and stress-wave velocity of stems were 27.3
cm, 16.8 m and 2.89 km/s for C. crenata, and 23.6 cm, 18.1 m and 3.29 km/s for M. obovata, respectively. Mean values of dynamic
Young's modulus of logs were 8.08 and 8.90 GPa for C. crenata and M. obovata, respectively. Dynamic Young's modulus of logs
gradually increased from bottom to a certain height, and then it gradually decreased toward the tree top in both species. Mean
values of oven-dry density, MOE, MOR, and bending work in C. crenata and M. obovata were 0.55 g/cm?, 8.78 GPa, 75.6 MPa
and 7.6 N m, and 0.42 g/cm?, 8.69 GPa, 73.7 MPa and 7.5 N m, respectively. No significant correlations were found between oven-
dry density and bending properties, suggesting that prediction of bending properties by oven-dry density is difficult in both species.
Keywords: Castanea crenata, Magnolia obovata, stress-wave velocity, wood density, bending property
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1. Introduction

Until 1960's, firewood and charcoal were commonly used
as fuel for cooking, heating and others in personal houses
in Japan. The firewood and raw materials for charcoal
were mainly obtained from the secondary forests mainly
composed of broad-leaved tree species. After 1960's, fossil
fuels, such as liquid propane gas, kerosene and others have
been used as fuel in personal houses (Kanazawa et al. 2009).
Thus, demands were dramatically decreased for firewood
and charcoal. Decreasing the demands of firewood and
charcoal led increases of wood resources in abandoned
secondary forests. To manage the abandoned secondary
forests, considering the utilization of hardwood resources
from the forests is important.

In Japan, basic wood properties have been mainly
investigated for plantation softwood species, such as
Cryptomeria japonica (Fukuhara et al. 1983; Hirakawa et
al. 1997; Kijidani and Kitahara 2003; Nishimura et al. 2003;
Ishiguri et al. 2009; Yamashita et al. 2009), Chamaecyparis
obtusa (Tsushima et al. 2006; Kijidani et al. 2012), and Larix
kaempferi (Zhu et al. 2000; Koizumi et al. 2005; Fukatsu
et al. 2015). On the other hand, available data on wood
properties are not so much for broad-leaved tree species
found in the secondary forests (Sawabe and Suzuki 1983;
Furukawa et al. 1983). To effectively utilize the hardwood
resources, studies on wood properties are needed for broad-
leaved tree species.

The objectives of this study are to obtain the basic
information about wood properties of broad-leaved tree
species abundantly found in secondary forests in Japan. In
this study, two broad-leaved tree species, Castanea crenata
Siebold et Zucc. and Magnolia obovata Thunb. were used.
After measuring the growth characteristics and stress-wave
velocity of stems, total six trees (three trees in each species)
were harvested for determining dynamic Young's modulus of
logs and wood properties such as bending properties.

2. Materials and methods

2.1 Materials

Two broad-leaved tree species, Castanea crenata Siebold
et Zucc. and Magnolia obovata Thunb. were used in the
present study. Castanea crenata is ring-porous wood and M.
obovata is diffuse-porous wood. These trees were naturally
regenerated in the secondary forests located in Funyu
Experimental Forest, School of Agriculture, Utsunomiya
University (36°46' N, 139°49' E, ca. 340 m above sea level).

2.2 Growth characteristics and stress-wave velocity of
stems

Growth characteristics and stress-wave velocity were
measured for 13 and 12 trees for C. crenata and M. obovata,
respectively. Stem diameter at 1.3 m above the ground
was measured by tape measure (F10-02DM, KDS). A
commercial handheld height meter (Vertex 1V, Haglof) were
employed to measure tree height. Stress-wave velocity of
stems were determined by a handheld stress-wave timer

(Fakopp microsecond timer, Fakopp Enterprise) with the
method described in the previous study (Ishiguri et al. 2007,
2008). The sensors were set at 0.5 and 1.5 m above the
ground. Stress-wave propagation time was measured and
then the distance between sensors (1 m) was divided by the
time for calculating the stress-wave velocity.

2.3 Dynamic Young's modulus of logs

After measuring growth characteristics and stress-wave
velocity of stems, six trees (three trees in each species) were
selected based on mean stem diameter at 1.3 m above the
ground in each species. After harvesting the six trees, the
logs with 2 m in length were collected from 1.3 m above the
ground to tree top. Number of annual rings at 1.3 m above
the ground ranged from about 30 to 50 in six harvested
trees. Total, 13 and 15 logs were obtained in C. crenata and
M. obovata, respectively. Dynamic Young's modulus was
measured by longitudinal vibration method (Sobue 1986).
One end of the logs was hit by a small hammer, and then
created sound was captured by accelerometer (PV-85, RION)
set on another end of the logs. The first resonance frequency
was determined by a handheld fast Fourie transform
analyzer (AD-3527, A&D). For calculating the dynamic
Young's modulus, density at testing was also determined by
measuring the both end diameters, length, and weight.

2.4 Wood properties

Logs with 50 cm in length were collected from 0.8 to 1.3 m
above the ground level from the harvested six trees. Bark
to bark radial boards with pith (30 mm in thickness) were
obtained from the logs. After air-drying, the boards were
planed to 20 mm in thickness, and then two pith to bark
radial boards were prepared. The pith to bark boards were
cut again at 20 mm interval from pith to prepare the static
bending test specimens (ca. 20 (T) by 20 (R) by 320 (L)
mm). The bending test was conducted by a universal testing
machine (MSC-5/200-2, Tokyo Testing Machine) with 280
mm span. The load was applied at the radial surface of
center of specimens with speed of 5 mm/min. The load and
deflection data was recorded in computer and the following
bending properties were determined: modulus of elasticity
(MOE), modulus of rupture (MOR), and bending work. For
calculating the bending work, proposal limit was regarded
as the point of which two-third values of maximum load.
Then, area was determined for load-deflection diagram
obtained by the static bending test. After the bending test,
small specimens (ca. 20 by 20 by 20 mm) were obtained
from the specimens without any damages in bending test
for calculating moisture content at testing and oven-drying
density.

2.5 Data analysis

All data analysis were conducted by using a software (R
version 4.0.2, R Core Team 2020). Correlation coefficients
among properties were calculated by 'cor.test' in R software.
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3. Results and discussion
3.1 Growth characteristics and stress-wave velocity of
stems
Table 1 shows stem diameter, tree height, and stress-wave
velocity of stem. Mean stem diameter and tree height were
27.3 cm and 16.8 m for C. crenata, and 23.6 cm and 18.1
m for M. obovata, respectively. Although tree age was
unknown, C. crenata trees showed larger stem diameter with
shorter tree height compared to M. obovata trees.
Stress-wave velocity ranged from 2.55 to 3.27 km/s for C.
crenata, and 2.89 to 3.60 km/s for M. obovata, respectively.
In trees grown temperate zone, Tanabe et al. (2020) reported
that stress-wave velocity of Lithocarpus edulis trees grown
in Chiba, Japan (estimated tree age =30 to 60 years old)
ranged from 3.00 to 4.32 km/s. Prasetyo et al. (2015a)
reported that mean values of stress-wave velocity of stems
in half-sib families planted in three different initial spacings
ranged from 2.71 to 3.08 km/s for 20-year-old Zelkova
serrata trees. The results obtained in the present study
showed relatively slower stress-wave velocity compared to L.

3.2 Logs

Mean values of dynamic Young's modulus of logs in each
individual trees ranged from 7.30 to 9.29 GPa for C. crenata,
and 8.68 to 9.14 GPa for M. obovata (Table 2). Mean values
of three trees were 8.08 and 8.90 GPa for C. crenata and M.
obovata, respectively. Prasetyo et al. (2015b) reported that
mean value of static MOE of 20-year-old Z. serrata logs was
6.43 GPa. In general, dynamic Young's modulus showed
about 5 to 10% higher values than the MOE value (Ishimaru
et al. 2017). Thus, although the tree age might be different,
dynamic Young's modulus of logs obtained in the present
study relatively higher values compared to 20-year-old Z.

serrata logs.
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Thus, it is concluded that stress-wave velocity of stem might
be independent from growth characteristics in C. crenata and
M. obovata.

Table 1 Stem diameter, tree height and stress-wave velocity of stems

Stem diameter (cm) Tree height (m)

Figure 1 Relationships between stem diameter, tree height, and stress-
wave velocity of stems in two species
Note: r, correlation coefficient; p: probability; ¢, Castanea crenata; m,

Magnolia obovata. Solid line indicates regression lines in Castanea crenata.

. D (cm) TH (m) SWV (km/s)

Species n - - -
Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max.
C. crenata 13 273 7.5 15.5 422 16.8 33 122 21.7 2.89 0.20 2.55 327
M. obovata 12 23.6 35 184 30.0 18.1 32 129 23.7 329 0.22 2.89 3.60

Note: n, number of trees; D, stem diameter at 1.3m above the ground; TH, tree height; SWYV, stress-wave velocity of stems; SD, standard deviation; Min., minimum;

Max., maximum.

Table 2 Green density and dynamic Young's modulus of logs in two species

Castanea crenata

Magnolia obovata

Property Mean/ Mean/
No. 1 No.2 No.3 No. 1 No.2 No.3
Total Total
n 6 4 3 3 5 6 4 3
091 0.89 0.85 0.88 0.72 0.72 0.75 0.73
GD (g/em?)
(0.03) 0.02) (0.05) (0.03) (0.02) (0.07) (0.04) 0.02)
7.30 9.29 7.66 8.08 8.68 9.14 8.88 8.90
DMOE (GPa)
(1.32) (0.35) (1.35) (1.06) 0.47) (0.63) (1.29) (0.23)

Note: n, number of logs in a tree (No. 1, 2, or 3) or number of trees in 'Mean/Total' column; GD, green

density; DMOE, dynamic Young's modulus. Values in parenthesis after mean values indicate standard

deviation.
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Figure 2 shows longitudinal variations of dynamic
Young's modulus of logs. In both species, dynamic Young's
modulus of logs increased from first log (collected from 1.3
to 3.3 m above the ground) to second (3.3 to 5.3 m above the
ground) or third (5.3 to 7.3 m above the ground) logs, then
gradually decreased with increase of height position. Similar
longitudinal variations of dynamic Young's modulus were
found in softwood species: dynamic Young's modulus of C.
Jjaponica logs showed peak values at a certain height and
then it gradually decreased toward the tree top (Hirakawa
et al. 1997). Hirakawa et al. (1997) reported that microfibril
angle of S: layer in tracheid affected these longitudinal
tendencies. Thus, longitudinal variations of logs in this
study also might be related to the microfibril angle of wood
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Figure 2 Longitudinal variations of dynamic Young's modulus of logs in
two species
Note: Each symbol indicates each individual tree. Solid lines indicate mean

values in each species.

Table 3 Bending properties in two species

fibers. Further research is needed to identify the effects of
microfibril angle on dynamic Young's modulus of logs in
broad-leaved tree species.

3.3 Wood properties

Results of bending test were shown in Table 3. Wood
Technology and Wood Utilization Division (1982) reported
that oven-dry density, MOE, and MOR were 0.48 (sapwood)
- 0.52 (heartwood) g/cm?, 8.77GPa and 75.2 MPa for C.
crenata, and 0.43 (heartwood) - 0.45 (sapwood) g/cm?, 7.64
GPa and 74.7MPa for M. obovata. Mean values obtained in
the present study were similar to those reported by Wood
Technology and Wood Utilization Division (1982). On the
other hand, mean values of bending work in C. crenata and
M. obovata were 7.6 and 7.5 N m, respectively (Table 3).
In C. japonica, bending work in juvenile wood and mature
wood was 8.6 and 6.0 N m (Ishiguri et al. 2009). Although
the C. japonica is a softwood, mean values of bending work
in two broad-leaved tree species used in the present study
were similar to those in C. japonica.

Radial variations of oven-dry density and bending
properties were shown in Figure 3. Oven-dry density was
almost constant from pith to bark in C. crenata, but it
gradually decreased in M. obovata. All bending properties
determined in the present study gradually increased from
pith to bark in C. crenata. On the other hand, in M. obovata,
it gradually increased and then decreased toward bark side.

In general, wood density is positively related with bending
properties (Ishimaru et al. 2017). In the present study, as
shown in Figure 4, no significant correlations were found
between oven-dry density and bending properties. Thus,
bending properties might be related with other factors, such
as microfibril angle of S: layer in wood fibers. It has been
reported that MOE is positively correlated with MOR in
many species (Ishimaru et al. 2017). This tendency is also
true for the results in the present study (Figure 4). On the
other hand, bending work was significantly correlated with
MOR in only C. crenata. Ishiguri et al. (2009) reported that,

Castanea crenata

Magnolia obovata

Property Mean/ Mean/
No. 1 No.2 No.3 No. 1 No.2 No.3
Total Total
n 4 5 4 3 4 4 4 3
12.5 12.6 11.9 123 11.3 11.0 11.1 11.1
MC (%)
0.2) 0.2) (0.3) 04) 0.2) 0.2) 0.2) 0.2)
0.60 0.53 0.53 0.55 0.40 041 045 042
OD (g/cm?)
(0.03) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03) (0.03)
8.15 8.32 9.87 8.78 8.27 9.01 8.79 8.69
MOE (GPa)
(2.77) (1.37) 0.72) (0.95) 041) (0.89) (0.37) (0.38)
70.8 79.0 76.9 75.6 69.9 73.7 71.5 73.7
MOR (MPa)
(39.8) (11.1) (19.0) 4.3) (5.5) 5.5) (3.6) (3.8)
84 8.1 6.2 7.6 7.8 6.6 82 75
W (N m)
(74) 2.2) 4.1) (1.2) 0.1) 0.9) (1.0) (0.8)

Note: n, number of specimens from radial position in a tree (No. 1, 2, or 3) or number of trees in 'Mean/Total'

column; MC, moisture content at bending testing; OD, oven-dry density; MOE, modulus of elasticity; MOR,

modulus of rupture; W, bending work. Values in parenthesis after mean values indicate standard deviation.
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in C. japonica, significant correlation was found between
MOR and bending work in mature wood, but not in juvenile
wood. They also pointed out that bending properties of C.
Jjaponica were mainly affected by wood density in juvenile
wood, and by microfibril angle in mature wood. Thus, further
research is needed for relationship between microfibril angle
and bending properties in hardwoods.

4. Conclusions

In the present study, growth characteristics, stress-wave
velocity of stems, dynamic Young's modulus of logs, and
basic wood properties were investigated in two broad-
leaved tree species (C. crenata and M. obovata) naturally
regenerated in a secondary forest. Stress-wave velocity of
stems was 2.89 and 3.29 km/s for C. crenata and M. obovata,
respectively. Weak negative, but no significant correlations
were found between growth characteristics and stress-wave
velocity of stems in both species. Dynamic Young's modulus
of logs gradually increased from bottom to a certain height
positions, and then it gradually decreased. Mean values of
dynamic Young' modulus of logs were 8.08 and 8.90 GPa
for C. crenata and M. obovata, respectively. Mean values
of oven-dry density, MOE, MOR, and bending work in C.
crenata and M. obovata were 0.55 g/cm?, 8.78 GPa, 75.6
MPa and 7.6 N m, and 0.42 g/cm?, 8.69 GPa, 73.7 MPa and
7.5 N m, respectively. Significant positive correlations were
not found between oven-dry density and bending properties,
suggesting that prediction of bending properties by oven-dry
density is difficult in both species. Thus, further research is
needed to clarify the suitable factors which can predict the
bending properties in both species.
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Figure 3 Radial variations of oven-dry density and bending properties in
two species

Note: MOE, modulus of elasticity; MOR, modulus of rupture, W, bending
work. Each symbol indicates each individual tree. Solid lines indicate mean

values in each species.
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