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内容梗概 

高齢化に伴い、高齢の運転手による交通事故が増加している。また、道路上

での急加速、あおり運転、突然のブレーキングなどの危険な運転行動のニュース

もよく見聞きする。交通事故の原因の大きな要素が運転者の心理状態である。こ

のため、自動車のシステムが危険を察知し、アナウンスなどで介入して運転者を

健康な心理状態へ導くことで、運転の安全性を高めることが望まれる。将来的に

は自動運転車の普及が見込まれているものの、現在はそれに先立つ移行期間で

あり、このようなシステムが特に重要である。しかし、現存する多くの研究は、

運転前のリラクゼーション技術や危険な状態への警告に重点を置いており、運

転手の心理状態の評価の重要性が見過ごされている。この心理状態評価に関す

る視点の欠如は、運転安全を確保する際の大きなギャップとなっている。 

運転に悪影響を及ぼす心理状態のうち、“疲れ”（疲労）は交通事故の主な要

因の一つであり、認知能力と知覚能力が低下する。この低下は不十分な休息、長

時間の労働、概日リズムの乱れなどに起因し、注意力、反応時間、意思決定能力

などの安全運転に必要な能力を著しく損なう。しかし、既存の研究は運転者の疲

労やその他の精神状態を推定するために単一の方法論に頼ることが多く、測定

と検証のための包括的かつ体系的な方法論が不足している。 

本研究は、自動車の運転者から生体信号データを収集するための包括的な

センサーネットワークを構築し、各種センサーから得られた情報をもとに運転

者の疲労度を推定することで、より安全な自動車社会の推進に貢献することを

目指す。特に本論文では、高忠実度の運転シミュレータ（DS）と、加速度計、心

拍数モニター、EEG センサー、ビデオカメラ、アイトラッカーなどの多様なバ

イオシグナルセンサーを統合し、運転者の疲労度を推定する新しいアプローチを

提案する。実験では、シミュレータ内の運転条件を各種変更し、DS から運転操

作データと、センサーから運転者の生理学的データを体系的に収集し、脳波活動、

心拍数、顔の表情、身体の動き、眼の動き、運転中の操作データなどを詳細に記
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録し、分析することが可能となる。本研究の主たる目的は、運転手の精神状態を

正確に特定するための分散型、体系的なフレームワークの開発と検証であり、特

に疲労の兆候の特定に焦点を当てる。 

本研究では、さまざまなデータタイプ間の相関や関係を詳細に分析し、運転

手の心理状態を評価した。生体信号からの心理状態の推定精度を高めるために、

自己報告式心理測定ツールを統合したことで、生体信号データの解釈を強化し、

運転手の心理状態の包括的な評価を可能にした。分析段階では、高度な顔認識技

術の開発を含む洗練された統計的方法を採用した。本手法では、表情の詳細な分

析のために顔のランドマークを利用し、さまざまな心理状態の正確な分類を実

現した。また、眼球運動の画像化で得られた眼球運動のパターンを分析し、運転

者の疲労を評価した。疲労度評価の精度は、補足的なデータセットとの相互参照

により確認した。 

実験により、センサーネットワークを使用した運転者の心理状態の評価は

有用であることが示された。結果の要点は次の 3 点に集約できる。(1)運転者の

生体信号、操作データと心理状態の間には相関関係があり、運転者の心理状態評

価には、これらを組み合わせることが有用である。(2)アンケートと気分評定尺

度は主観的評価ツールとして信頼性がある。(3)顔の表情分析と眼の動きにより、

疲労の直接的かつ正確な検出が可能である。これらの結果は、運転者の疲労度推

定における本ネットワークの高いポテンシャルを示唆している。 

ただし、実験環境において EEG センサーの性能が最適ではなかったこと、

アンケート実施に関する制約、運転者と同乗者の画像使用に関するプライバシ

ーの懸念など、いくつかの課題が存在した。今後の研究では、運転者の感情評価

のために、コントローラーエリアネットワーク(CAN)データの統合や、ユーザー

フレンドリーなウェアラブルセンサーの活用を検討する予定である。この目的

は、本研究で得た知見を、より広範で信頼性の高い方法で得られた結果と対比さ

せることである。この研究から得られる洞察と手法は、自動車分野の安全性の向

上に寄与することが期待される。 
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Abstract 

In the context of an aging demographic, there has been a notable escalation in 

vehicular accidents attributed to elderly motorists. Concurrently, the prevalence of 

hazardous driving behaviors — exemplified by abrupt acceleration, aggressive tailgating, 

and unforeseen braking — has become a recurrent theme in media coverage. The driver's 

psychological state is a pivotal element contributing to the causation of these traffic 

incidents. In light of this, it is imperative to augment driving safety by integrating 

advanced automobile systems capable of detecting potential dangers. Such systems 

should proactively intervene through auditory alerts or other mechanisms to steer drivers 

toward psychological well-being conducive to safe driving practices. The advent of 

autonomous vehicles is anticipated to be a transformative development in road safety. 

However, implementing systems addressing driver psychology is paramount in the 

current transitional phase that precedes the widespread adoption of these autonomous 

technologies. Despite this, a significant proportion of extant research has predominantly 

focused on relaxation techniques before driving and alerts for hazardous states, neglecting 

the criticality of evaluating the driver's psychological condition. This oversight in 

assessing the psychological states of drivers constitutes a substantial hiatus in the 

overarching efforts to ensure vehicular safety. 

Driver fatigue, a critical factor in traffic accidents, reflected a diminished mental 

state characterized by a decline in cognitive and perceptual abilities. This deterioration, 

often attributed to inadequate rest, prolonged mental exertion, or disrupted circadian 

rhythms, severely impairs critical faculties necessary for safe driving, including attention 

span, reaction time, and decision-making capabilities. However, it was noted that existing 

research predominantly relied on single-method approaches for estimating driver fatigue 

or other mental states, needing a holistic and systematic methodology for measurement 

and verification. 

Our study aims to devise and execute a comprehensive sensor network to gather bio-

signal data from individuals operating automotive vehicles. A novel approach was 

proposed, utilizing an integrated sensor network that comprised a high-fidelity driving 

simulator (DS) and diverse bio-signal sensors, such as an accelerometer, heart-rate 

monitor, EEG sensor, video camera, and eye tracker. In the experimental setup, driving 

conditions within the simulator were varied to methodically collect operational metrics 

from the DS alongside physiological data from the sensors. This network was observed 

to diligently record and analyze various physiological and behavioral parameters, 



v 

 

including brainwave activity, heart rate, facial expressions, body movements, eye 

movements, and operational data during driving. The research's primary goal was to 

develop and validate a decentralized, systematic framework for precisely determining 

drivers' mental states, focusing on identifying signs of fatigue. 

The research involved an in-depth analysis of the correlations and relationships 

among various data types to assess drivers' mental conditions. A recognized psychometric 

tool was integrated to augment the bio-signal data to enhance the accuracy of mental 

condition determination by bio-signals, facilitating a comprehensive assessment of 

drivers' mental states. In the analytical phase, sophisticated statistical methods were 

employed, including developing an advanced facial recognition technique with high 

detection accuracy. This technique utilized facial landmarks to analyze facial expressions, 

precisely classifying various mental states. Also, driver fatigue was evaluated by 

analyzing ocular motility patterns captured in eye movement imagery. This assessment 

was then corroborated through cross-referencing with supplementary datasets to ascertain 

the precision of the fatigue determinations. Evaluating drivers' mental conditions using 

our sensor network proved highly effective. The findings emphasized three key points: 

(1) The identified correlations among bio-signals, operational data, and emotions to 

evaluate drivers' mental conditions by highlighting the combined utility; (2) The 

reliability of questionnaires and emotion levels as subjective evaluation tools; (3) The 

direct and accurate detection of fatigue through facial expression analysis and eye 

movement. These results indicated the significant potential of the network in estimating 

driver fatigue. 

However, there were challenges, including the suboptimal performance of EEG 

sensors in the experimental environment, limitations in questionnaire administration, and 

privacy concerns regarding the use of driver and passenger images. In response to these 

challenges, future research endeavors are anticipated to explore the integration of 

Controller Area Network (CAN) data and more user-friendly wearable sensors for 

assessing driver fatigue. The objective is to juxtapose these results with those obtained 

from broader, more reliable methods. The insights and methodologies derived from this 

study are expected to contribute substantially to advancing safety in the automotive 

domain. 
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Chapter 1 

Introduction 

Road traffic accidents, a significant global public health concern, are primarily 

attributable to human errors. These errors, identified in various studies, include speeding, 

impaired driving due to alcohol consumption, distractions, non-compliance with traffic 

signals, and neglect of safety equipment [1-1]. A thorough investigation into critical 

driving scenarios, incorporating essential environmental factors and characteristics of 

driver behavior during collisions, as shown in Figure 1-1, has uncovered that an 

overwhelming 82% of vehicle-to-vehicle accidents are caused by human factors [1-2]. 

This finding underscores the paramount importance of mental states in driving safety. 

The study of human factors in driving examines a comprehensive array of elements 

contributing to driver behavior. The driver's behavior includes, but is not limited to, 

dynamics such as braking, acceleration, navigation, compliance with traffic regulations, 

and the extent of human participation in the driving task [1-3]. These elements are crucial 

to understanding and predicting driver behavior. Central to these factors is the role of 

inherent human mental traits, with the mental state being of paramount importance. It 

significantly influences an individual's driving performance, which in turn has direct 

implications for road safety. This multifaceted approach acknowledges the complexity of 

human factors in driving and underscores the need for a thorough understanding of how 

mental traits impact driving behaviors and overall road safety. 

The study of mental states, encompassing a range of internal experiences such as 

perceptions, sensations of pain or pleasure, beliefs, desires, intentions, emotions, and 

memories, plays a crucial role in the context of driving behavior. 
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Figure 1-1. Near-Miss incident categories of Japan 

 

 

Figure 1-2. Number of people injured or killed in Road Rage shootings [1-8] 
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These states are inherently subjective, with each individual having exclusive access 

to their mental experiences, while others can only infer these states from observable 

behaviors [1-4]. Emotions, a significant component of mental states, profoundly impact 

driving behavior. Intense emotions can lead to 'rage driving,' characterized by a loss of 

self-control and aggressive driving behaviors [1-5] [1-6]. Research has shown that drivers 

under the influence of emotions such as anger or happiness exhibit altered driving patterns, 

including decreased time-to-collision and extended braking times, compared to those in 

a neutral emotional state [1-7]. This research indicates that drivers in heightened 

emotional states pose a greater risk on the road.  

To illustrate the severe impact of driver emotions on road safety, two incidents in 

2017 and 2019 serve as poignant examples. The first incident involved a rear-end collision 

caused by a driver experiencing road rage, resulting in fatalities and leading to vehicular 

homicide charges [1-8]. The second incident occurred when a driver, emotionally agitated 

and speeding, lost control of his vehicle, leading to a collision with multiple casualties 

and injuries [1-9]. These cases underscore the need for emotional regulation in driving 

and highlight the significant legal and societal consequences of emotionally driven road 

incidents [1-10]. Driver fatigue, encompassing mental and emotional exhaustion, is 

another critical factor adversely affecting road safety [1-11]. Fatigue results in slower 

reaction times, diminished attention, reduced situational awareness, and impaired vehicle 

control. An increase in fatigue-related crashes is evident, especially after prolonged 

driving periods (Figure 1-3). Internationally, fatigue is recognized as a significant 

contributor to road accidents [1-13] [1-14], though its full impact is likely underreported. 

While well-documented, the link between driver fatigue and increased accident risk 

remains a subject of ongoing research debate. This debate is partly due to variations in 

research methodologies and findings [1-15]. While many crashes are attributed to driver 

fatigue, this does not conclusively establish that fatigue enhances accident risk. Fatigued 

drivers, who often travel longer distances, may balance the risk per kilometer traveled. 
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Research also suggests heightened risks among specific groups, such as young or 

professional drivers, indicating a complex interplay of factors. 

The strategic management of driver mental states, especially recognizing and 

mitigating emotional conditions that impair judgment, is essential for enhancing road 

safety. This aspect becomes even more significant in semi-autonomous and autonomous 

vehicles. In these systems, estimating a driver's emotional state is crucial for modifying 

vehicle settings in response to the driver's mood, thus facilitating smooth transitions 

between manual and automated driving modes. Such systems enhance safety by 

identifying and responding to emotions like stress and fatigue, which are known to lead 

to hazardous driving behaviors. Furthermore, this approach contributes to the overall 

well-being of drivers by reducing stress and fatigue, thereby averting long-term health 

issues. In advanced vehicular technology, the comprehension and management of a 

driver's mental state enrich the driving experience through personalized settings and play 

a pivotal role in human-machine interaction. This function includes adapting the level of 

the vehicle's autonomy to the driver's current state, thereby ensuring a safer and more 

efficient driving experience.  

 

Figure 1-3. Crash risk function of driving time [1-12] 
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The automotive industry's growing emphasis on driver assistance technologies to 

bolster road safety [1-16] underlines the necessity of addressing mental influences, 

particularly fatigue, in drivers. Accurately estimating mental states during driving is 

imperative to prevent dangerous behaviors and enhance road safety. 

For estimating mental states, our study proposed a comprehensive approach 

involving a sensor network to collect a wide range of bio-signal data from individuals 

operating automotive vehicles. We introduced an innovative method employing an 

integrated sensor network comprising a high-fidelity driving simulator (DS) and various 

bio-signal sensors. These sensors include accelerometers, heart-rate monitors, EEG, 

video, and eye trackers. In our experimental setup, driving conditions within the simulator 

were systematically varied to collect operational metrics from the DS and physiological 

data from the sensors. This network adeptly recorded and analyzed various physiological 

and behavioral parameters, such as brainwave activity, heart rate, facial expressions, body 

movements, eye movements, and operational data during driving sessions. Our research 

aims to develop and validate a decentralized, systematic framework for accurately 

determining drivers' mental states, with a particular emphasis on identifying indicators of 

fatigue. This framework is expected to contribute significantly to the field of road safety 

by enabling more nuanced and effective management of driver mental states. 

Chapter 1 delineates the research's objectives and scope, establishing the foundation 

for the subsequent investigation. Chapter 2 provides a comprehensive literature review 

on measuring mental conditions, particularly in the context of automotive safety. This 

review synthesizes existing research, identifying gaps and setting the stage for the study's 

unique contributions. 

Chapter 3 introduces an innovative methodology for estimating a driver's mental 

state, employing a sophisticated sensor network. This network primarily comprises a 

driving simulator (DS) and an array of bio-signal sensors, including accelerometers, 

heart-rate monitors, electroencephalogram (EEG) sensors, video cameras, and eye 
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trackers. The experimental setup involves varying driving conditions to collect a rich 

dataset encompassing operational parameters from the DS (such as accelerator pedal 

position, brake pressure, vehicle speed, and acceleration) and bio-signal data 

(surrounding brainwave activity, heart rate, facial expressions, and eye movement). 

Recognizing the complexities inherent in accurately assessing mental states through 

biosignals alone, we integrate the Positive and Negative Affect Schedule (PANAS) [1-

17], a validated self-report tool, to complement the biosignal data and provide a more 

holistic understanding of driver mental states. 

Chapter 4 presents the statistical techniques for analyzing operational and bio-signal 

data. These include advanced methods like fast Fourier transformation (FFT) [1-18] and 

K-means clustering [1-19]. A noteworthy aspect of this chapter is introducing a novel 

facial recognition technique tailored for enhanced accuracy and efficiency in analyzing 

facial expressions. This method utilizes a sophisticated 42-dimensional feature vector to 

capture essential facial characteristics and employs a clustering algorithm to effectively 

categorize mental states, significantly refining the accuracy of emotional assessments. 

Chapter 5 elaborates on the experimental framework and analytical methodologies 

employed to infer drivers' mental states. This section begins with a comprehensive 

description of the systematic integration of diverse sensor technologies to facilitate a 

holistic assessment through the augmented juxtaposition of various data sets. The primary 

goal is to increase the precision and reliability of mental state estimations by harnessing 

multifaceted data sources. This chapter also provides an overview of the preliminary 

study conducted before Fiscal Year 2022. 

Subsequently, the chapter delineates three distinct research initiatives undertaken 

since Fiscal Year 2022. The first initiative evaluates driver mentality by correlating 

driving performance data with responses from the Positive and Negative Affect Schedule 

(PANAS) questionnaire. The scope of this investigation has expanded to include a 

thorough analysis of these aspects, emphasizing validating the results derived from sensor 
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data. This expanded scope incorporates a detailed examination of the interplay between 

various driving behaviors—such as steering patterns, braking consistency, and speed 

variability—and self-reported emotional states, as per the PANAS questionnaire. This 

approach facilitates a deeper understanding of the nexus between subjective emotional 

experiences and objective driving behaviors.  

The second project investigates the application of video cameras to estimate driver 

fatigue, addressing the inherent limitations and unreliability of EEG and ECG sensors. 

This section progresses beyond the rudimentary use of video imagery for fatigue 

assessment by integrating facial recognition and body movement analysis. When 

analyzed collectively, this holistic approach examines how variations in facial 

expressions and eye movements provide a comprehensive insight into the driver's 

emotional and mental state. Such a multimodal methodology enhances the precision and 

depth of fatigue-level evaluations. 

The third initiative refocuses on analyzing eye movement as a pivotal metric in 

evaluating driver fatigue, particularly in employing video cameras within automotive 

vehicles. This section extensively explores how eye movement patterns are reliable 

indicators of mental states, predominantly fatigue, during driving. It delves into the 

intricate correlation between eye movement characteristics and the driver's level of 

alertness, thereby contributing to a more sophisticated and accurate assessment of driver 

fatigue. This assessment is further enhanced by introducing topological data analysis in 

the study of EEG data, aiming to unravel the complex relationship between brainwave 

patterns and driver fatigue. 

In Chapter 6, the research culminates in synthesizing the principal findings and their 

implications for estimating driver mental states, including reflections on integrating 

diverse sensor technologies and analytical methods. The chapter acknowledges both the 

successes and limitations of the study and proposes future research trajectories, focusing 

on refining methodologies and broadening the spectrum of emotional states examined. 
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The empirical analysis conducted in this study demonstrates the efficacy of a 

multifaceted data collection approach in assessing drivers' mental states, particularly 

underscoring the potential of an integrated sensor network in accurately estimating driver 

mental states, with an emphasis on fatigue. The key findings of this investigation include: 

(1) A notable correlation was established between bio-signals, operational data, and driver 

emotions, emphasizing the collective value of these variables in the evaluation of driver 

mental states. (2) The study validated the effectiveness of questionnaires and subjective 

emotional assessments, confirming their utility in understanding drivers' mental 

conditions. (3) The research successfully estimated driver fatigue by analyzing facial 

expressions and eye movements. Additionally, it precisely detected specific mental states, 

such as happiness and anxiety, further demonstrating the potential of this approach in 

mental state assessment. These findings underscore the significant prospects of 

employing a comprehensive sensor network for the nuanced and accurate estimation of 

driver mental states, contributing valuable insights to the field of automotive safety.  

However, the study also encountered several challenges. These included the 

suboptimal performance of EEG and ECG sensors in the experimental context, limitations 

associated with the administration of questionnaires, and privacy concerns related to the 

recording of images of drivers and passengers. In light of these challenges, future research 

is directed toward incorporating Controller Area Network (CAN) [1-20] data and utilizing 

more user-friendly wearable sensors, such as smartwatches, for a more nuanced 

assessment of driver emotions. This approach intends to reconcile these findings with 

those derived from more robust and reliable methods. The insights and methodologies 

developed through this research are anticipated to enhance safety measures within the 

automotive industry significantly. 
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Chapter 2 

Research Background 

2.1. Mental Condition 

Mental condition, alternatively referred to as mental state, demonstrates significant 

diversity and complexity. Mental condition encompasses a range of phenomena, 

including perception, belief, desire, intention, emotion, and memory, often displaying 

considerable overlaps across these categories. Mental states can be dichotomized into 

sensory states, characterized by sense impressions, and non-sensory states. Further, they 

are classified as propositional or non-propositional, containing distinct propositional 

content. A critical distinction exists between intentional states, directed towards specific 

objects or states of affairs, and non-intentional states, which lack this relational 

characteristic. In terms of consciousness, mental states may be conscious, encompassing 

an experiential aspect, or unconscious, devoid of such phenomenality. Additionally, 

mental states are categorized as occurrent, actively engaging in cognitive processes, or 

non-occurrent, existing in a latent state without immediate mental influence. Within the 

realm of rationality, they are evaluated as rational and irrational, contingent upon their 

alignment with established rationality norms [2-1] [2-2].   

2.2. Emotional State 

Emotions, a specialized subset of mental states, are characterized by distinct 

subjective experiences, physiological responses, and behavioral tendencies [2-3]. They 

significantly influence and are influenced by other mental states, such as beliefs and 

perceptions. The interplay between emotions and other mental states occurs both 

consciously and unconsciously. Emotions exhibit notable physiological correlates, 

aligning with broader physical manifestations of various mental states. Cognitive 

appraisal theories emphasize cognitive perceptions and interpretations in eliciting 

emotional responses, highlighting the cognitive-emotional nexus. In clinical psychology, 

the intricate interaction between diverse mental states and emotions is pivotal for 

understanding and addressing psychological disorders, as exemplified by the correlation 

between persistent negative thought patterns and emotional states such as sadness in 

depression [2-4]. The concept of emotional state often paralleled with mental state, is 

intrinsically linked to neurophysiological changes, leading to a spectrum of cognitive and 
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affective responses, behaviors, and experiences [2-5]. From a physiological perspective, 

emotions are experiences closely associated with distinct patterns of physiological 

activity [2-6]. Recognizing conscious emotional states as integral to human understanding 

is widely acknowledged, while attributing similar states to non-human entities remains 

debated in scientific discourse [2-7].  

2.2.1. Emotion Classification 

The study of emotion classification is a critical aspect of affective science, 

encompassing ongoing debates and diverse approaches. Researchers approach this 

complex field from two primary perspectives, leading to distinct types of emotion. Paul 

Ekman and colleagues advocate for a theoretical framework of emotions as different 

categories, suggesting universally recognizable fundamental emotions inherent to all 

humans [2-8]. These foundational emotions—anger, disgust, fear, happiness, sadness, and 

surprise—are deemed discrete due to their unique identification via consistent facial 

expressions and specific biological mechanisms [2-9]. Fundamental Emotion Theories 

propose that emotions like anger or sadness are activated by brain evaluations of stimuli, 

influenced by an individual's goals or survival instincts, and have distinct functions, 

expressions, and meanings [2-10]. In contrast, Constructionist Theories in emotion 

research suggest that emotions are constructed from fundamental biological and 

psychological elements, such as "core affect" and "conceptual knowledge," rather than 

being inherently fixed [2-11].  

2.2.2. Generation and Expression of Emotion 

Emotional responses, prompted by significant internal or external events, are often 

initiated through specific situational encounters [2-12]. Emotions represent intricate 

psychological and physiological responses to diverse stimuli and can be precipitated by 

many factors. They encompass complex constructs that include subjective experiences, 

cognitive evaluations, expressive behaviors, psychophysiological modifications, and 

intentional actions. Additionally, emotions frequently intersect with psychological 

constructs such as mood, temperament, personality, disposition, and creativity. While 

traditional perspectives often delineate cognitive processes like reasoning and decision-

making as separate from emotional cycles, this distinction is only sometimes upheld 

across some theoretical frameworks. 

Contemporary research in fields like clinical psychology and well-being studies is 

increasingly focused on the dynamic nature of emotions in everyday life. This research 

explores various facets of emotional states, including their intensity, spectrum, stability, 
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persistence, clarity, and tendency to fluctuate over time. This exploration examines how 

these emotional dynamics differ among individuals and across various human life stages 

[2-13].  

(1) Emotion generation  

The generation of emotions is a multifaceted process encompassing physiological, 

cognitive, and environmental elements. It begins with detecting an external or internal 

stimulus, followed by a cognitive appraisal, where the brain assesses its significance. This 

appraisal, in tandem with physiological responses orchestrated by the autonomic nervous 

system, culminates in the subjective experience of an emotion.  

The Affective Events Theory (AET) is a psychological framework that examines the 

impact of workplace events on employees' emotions, attitudes, and behaviors within their 

job context [2-14]. Central concepts of AET include affective events, emotion generation, 

emotion-driven outcomes, moderating factors, feedback loop, and time lag. As illustrated 

in Figure 2-1, the theory posits that emotion generation in the workplace starts with an 

individual's encounter with an event. This encounter is shaped by the individual's mental 

and emotional states and physical condition, leading to a perception influenced by 

personal goals and beliefs. This interaction gives rise to a new emotional state, 

manifesting as specific action tendencies, and simultaneously updates the individual's 

mental and physical conditions. This process creates a continuous feedback loop, 

resulting in a cycle of evolving emotional responses that affect workplace behavior and 

outcomes.   

(2) Emotion expression  

Concurrently, emotions manifest through expressions and action tendencies, such as 

 

Figure 2-1. Cognitive model of emotion generation process [2-15] 
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facial expressions and behavioral impulses. The process concludes with emotional 

regulation and reflection, which are essential for well-being and social functioning. 

Emotional expression is a multifaceted phenomenon that conveys an individual's 

emotional state or attitude, manifesting through verbal and nonverbal behaviors [2-16]. 

This form of expression encompasses various activities ranging from facial movements, 

such as smiling or scowling, to multiple behaviors. Additionally, emotional expressions 

can be more complex, involving actions such as writing a letter or presenting a gift. Table 

2-1 shows some of Darwin's descriptions of expressive behaviors [2-17].  

The study of emotions in psychology and neuroscience is characterized by diverse 

theories that differ primarily in their views on emotional expression. Some theories, 

known as the "basic emotion" perspectives, argue that emotions are biologically innate 

and consistent across cultures, with specific facial expressions directly indicating 

emotional states [2-18] [2-19]. Other approaches suggest a more flexible, cognitive-based 

understanding of emotions, where individual and cultural differences influence emotional 

responses shaped by personal appraisals of situations [2-20].  

Table 2-1. Darwin’s descriptions of expressive behaviors 

Astonishment eyes open, mouth open, eyebrows raised, hands placed over 

mouth 

Contemplation frown, wrinkle skin under lower eyelids, eyes divergent, 

head droops, hands to forehead, mouth, or chin, thumb/index 

finger to lip 

Determination firmly closed mouth, arms folded across breast, shoulders 

raised 

Devotion 

(reverence) 

face upwards, eyelids upturned, fainting, pupils upwards and 

inwards, humbling kneeling posture, hands upturned 

Happiness eyes sparkle, skin under eyes wrinkled, mouth drawn back at 

corners 

Surprise eyebrows raised, mouth open, eyes open, lips protruded, 

open hands high above head 
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Emotions are expressed through various channels, offering unique insights into our 

feelings. Facial expressions are immediate and potent, with specific looks for different 

emotions: Vocal cues like tone, pitch, and speed add depth to emotional expression; Body 

language, encompassing posture, and gestures, communicates emotions ranging from 

comfort to defensiveness; Physical reactions, such as movement and posture provide 

involuntary cues and convey emotions. Touch is a tactile form of emotional expression, 

with its nature and context significantly affecting its interpretation. 

2.2.3 Driver Emotion 

The emotional state of a driver, henceforth denoted as "driver emotion dynamics," 

encapsulates a spectrum of affective experiences encountered during the operation of a 

vehicle. These emotional nuances are not merely peripheral but pivotal, as they 

substantially influence the control of the car, the decision-making process, and, by 

extension, traffic safety. Given their pronounced and tangible impact on driving behaviors 

and consequent outcomes, an in-depth exploration and comprehension of these affective 

dynamics are imperative. The most prevalent driver emotions influencing driving 

operations can be categorized into six archetypes.  

(1) Stress/Anxiety 

Stress can emanate from the pressures of time constraints, such as urgency stemming 

from delay or persistent life stressors linked to occupational or domestic duties. Anxiety 

may be tied to specific driving contexts, prior negative experiences on the road, or a 

broader spectrum of anxiety disorders. Stress can induce rushed and aggressive driving 

behaviors, while anxiety often leads to indecision and overcaution. Both states can impair 

 

Figure 2-2. Universal expressions of emotion 
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concentration, increasing the probability of driving mishaps and collisions.  

(2) Anger 

Anger in drivers can be triggered by traffic congestion, perceived discourteous 

actions from other motorists, or personal emotional turmoil brought into the vehicle. 

Additionally, anger may accumulate over a journey due to minor irritations. This emotion 

is often expressed through aggressive driving behaviors synonymous with road rage, 

including tailgating, incessant honking, hostile gesturing, and verbal confrontations. Such 

behaviors can precipitate dangerous driving actions and increase the risk of conflicts or 

accidents. 

(3) Fear 

Fear in drivers can stem from previous traumatic vehicular incidents, challenging 

driving conditions like inclement weather, or apprehension linked to specific driving 

scenarios. Fear can cause a driver to hesitate, excessively slow down, or apply brakes 

unpredictably. It may also lead to avoidance strategies, with drivers opting for longer or 

less familiar routes to circumvent their fear's focal point. 

(4) Happiness/Contentment 

Personal achievements, enjoyable life events, pleasant companionship within the 

vehicle, or a general sense of well-being on a particular day may influence this positive 

emotional state. While happiness typically results in a relaxed driving approach, it can 

sometimes lead to distractions, as drivers might become preoccupied with thoughts or 

activities that are sources of their contentment.  

(5) Surprise/Shock 

Often triggered by unexpected events, such as narrowly averted accidents, wildlife 

entering the roadway, or unpredictable actions from other road users, the emotion of 

surprise or shock can elicit sudden and potentially hazardous driving responses, including 

abrupt braking or swerving. While these reflexive actions may be necessary for 

mysterious purposes, they can also result in disproportionate responses that introduce new 

risks, especially if they lead to a loss of vehicular control. 

Recognizing and understanding these emotional states and their precursors enables 

drivers to anticipate better and mitigate their impacts. Strategies for managing these 

emotions include instituting regular rest breaks, practicing relaxation techniques, or 

seeking professional intervention for more profound emotional disturbances, which can 

significantly enhance road safety and drivers' overall well-being. 
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2.3. Fatigue State 

Fatigue represents a multifaceted mental and emotional state characterized by 

diminished energy, vigilance, and attention, distinct from normal tiredness resulting from 

daily activities. Its complexity and varied presentations pose substantial challenges in 

identifying its origins, particularly in diseases with diverse pathologies, such as 

autoimmune disorders [2-21]. In medical and psychological research, the concept of 

fatigue encompasses a multifaceted and often complex state of exhaustion or tiredness, 

distinct from mere sleepiness. This portion of the doctoral paper delves into the nuanced 

definition, classification, and measurement of fatigue, providing a thorough overview of 

this critical subject. 

2.3.1. Definition of Fatigue 

Fatigue, in its academic definition, is a multidimensional construct characterized by 

a profound sense of exhaustion or weariness, distinct from normal sleepiness. It 

commonly follows extensive physical or mental activities, yet it can also present 

independently of such exertions. This condition, characterized by its persistence even 

after rest or sleep, suggests possible underlying medical causes. In medical discourse, 

fatigue is acknowledged as a complex and multifaceted phenomenon, often with an 

indeterminate etiology. It is associated with a variety of medical conditions, including 

autoimmune diseases, organ failure, chronic pain syndromes, mood disorders, infectious 

diseases, and post-infectious states. In healthcare, the term 'fatigue' extends beyond the 

ordinary energy depletion attributable to daily activities and necessitates more precise and 

nuanced terminology to encapsulate its diverse manifestations. 

2.3.2. Classification of Fatigue 

Fatigue can be categorized into two principal types: mental and physical fatigue. 

Mental fatigue is a transient decline in cognitive function, typically during prolonged 

cognitive tasks. Influenced by individual cognitive capacity, sleep quality, and overall 

health, it is empirically associated with reduced physical performance and presents 

symptoms like drowsiness, lethargy, and impaired attention [2-22]. The spectrum of 

fatigue encompasses a range of symptoms that include both physical and psychological 

elements, such as frequent yawning, drooping eyelids, a noticeable decrease in movement 

and speech speed, diminished concentration and cognitive focus, heightened irritability, 

mood instability, visual disturbances (e.g., blurred vision), physical discomforts (e.g., 

headaches, dizziness), muscle weakness, cognitive impairments, changes in motivation, 



16 

 

and appetite variations. These symptoms are influenced by factors such as sleep 

deprivation, physical overexertion, psychological stress, and underlying health conditions. 

The chronic nature of fatigue has profound implications on an individual’s functional 

capacity and quality of life, highlighting the necessity for effective management strategies. 

Mental fatigue significantly contributes to motor vehicle accidents, often resulting from 

extended driving, insufficient rest, or prolonged exertion [2-23]. Its exacerbation during 

typical rest periods is evidenced by reduced reaction times, decreased alertness, impaired 

judgment, and an increased risk of microsleeps, adversely impacting driving performance. 

Physical fatigue results from muscle activity, while mental fatigue arises from 

prolonged cognitive activities. The classification also includes central nervous system 

fatigue and muscle fatigue, with ongoing scholarly debate regarding their distinction or 

integration within a unified fatigue framework affecting various life aspects.  

2.4. Mental State Measurement Method 

Expressions of emotion constitute the external manifestations of internal affective 

states, which can be observed and quantitatively analyzed through several methods. 

(1) Facial expression analysis 

Facial recognition technologies using dashboard-mounted cameras analyze facial 

expressions to infer emotional states. This interdisciplinary approach integrates 

psychophysiology, cognitive science, artificial intelligence, and automotive engineering 

to improve driver welfare and traffic safety. Privacy and ethical considerations are 

paramount in this approach, necessitating informed consent, secure data management, 

and discreet monitoring systems. Paul Ekman's research demonstrated the cross-cultural 

recognition of facial expressions, contributing significantly to this field. 

(2) Vocal expression analysis 

Vocal affect is a primary conduit for emotional expression throughout human 

development and adult life, especially in modern contexts where telephonic 

communication is prevalent [2-24]. Hughlings Jackson's observations of patients with 

linguistic impairments due to left hemisphere brain damage revealed their capability to 

convey emotions vocally. This observation suggests a potential role of the right 

hemisphere in mediating vocal emotional expressions [2-25]. 

(3) Physiological monitoring 

Emotional states can be inferred from physiological signals, including heart rate, 

skin conductance, electromyography, respiratory rate, pupillometry, and thermal imaging. 

These methods, crucial for comprehensive emotion research, are complemented by EEG-
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based brainwave pattern analysis, which offers insights into the cerebral basis of emotions. 

Additionally, photoplethysmography (PPG) and electrocardiography (ECG) are 

employed for pulse signal analysis, reflecting emotional state changes [2-26] [2-27]. 

(4) Behavioral observation 

From an evolutionary perspective, body movements and postures indicate emotional 

states and intensities. They serve adaptive functions in response to events affecting an 

organism's well-being. Inertial Measurement Units (IMUs) and Vehicle Telemetry, 

measuring specific forces and vehicle handling, further contribute to this analysis [2-28]. 

(5) Self-report survey 

Self-report measures and questionnaires are pivotal in psychological research for 

assessing emotions, attitudes, and behaviors. These tools encompass various formats, 

such as Likert scale questionnaires, Visual Analog Scales, and frequency or intensity 

scales. Famous examples include the Positive and Negative Affect Schedule (PANAS), 

the Beck Depression Inventory (BDI) [2-29], and the State-Trait Anxiety Inventory 

(STAI) [2-30]. While these methods provide subjective insights and are straightforward 

to administer, they are prone to biases like social desirability and interpretational 

variability. Their effectiveness is maximized with other observational or physiological 

measures for a holistic understanding of emotional and behavioral patterns. 

2.5. Related Research 

In driver mental condition research, several methodologies have been employed to 

analyze data collected during or after driving, primarily encompassing three types of 

research. This section will concisely overview these methods and highlight their 

respective limitations. 

2.5.1. Investigations Utilizing Self-Report Questionnaire 

Study [2-31] comprehensively analyzed the factor structure of self-report 

instruments designed to assess drivers' behaviors and emotions in young adults. This 

analysis identified four primary factors: reckless driving behaviors, negative emotions 

related to driving, aggressive driving in response to other drivers' actions, and perceived 

aggression from other drivers. This investigation underscored the substantial overlap in 

these self-reported measures and suggested the necessity of further research in 

underexplored domains such as perceived aggression. Subsequently, study [2-32] 

undertook a systematic literature review comparing self-report methodologies to 

objective measures in driving behavior analysis. This review revealed that certain driving 
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behaviors, notably those experienced in high-stress scenarios, exhibit congruence 

between self-reported and accurate assessments. In contrast, significant divergences were 

observed in others, such as states of sleepiness and vigilance. 

Notably, the use of self-report questionnaires in assessing drivers' mental state is 

relatively limited. PANAS, the reliable and valid instrument for evaluating effect, has 

seen sparse application in the context of mental state measurement. 

2.5.2. Studies Using Single Sensor 

Research [2-33] introduced an innovative vehicular safety system harnessing EEG 

technology for the analysis and modulation of drivers' mental states, applying valence-

arousal models for emotion classification and integrating music therapy to influence these 

mental states, thereby aiming to reduce accident risks associated with emotional 

disturbances. Study [2-34] employed ECG technology for monitoring and stabilizing 

driver emotion, offering functionalities including physiological data display, data 

recording, signal processing, and analysis. Furthermore, research [2-35] proposed an 

approach focusing on facial expressions using data from a drive recorder. This approach 

utilized a comprehensive dataset of driver facial expressions corresponding to various 

road situations captured during driving. 

However, analyzing a driver's mental state remains complex and challenging, and 

reliance solely on single sensor data can be inadequate and inaccurate for practical 

estimation. Additionally, extracting meaningful insights from ECG or EEG data is fraught 

with challenges, including the need to discern representations invariant to inter- and intra-

subject variations and dealing with the intrinsic noise inherent in ECG data recordings. 

Furthermore, facial expression recognition studies, particularly those employing 

Convolutional Neural Networks (CNN) [2-36], often face significant hardware demands 

for large-scale data analysis.  

2.5.3. Studies Implementing Decentralized System 

Article [2-37] discussed a novel strategy for creating a driver monitoring system by 

tracking eyelid and eyebrow movements as indicators of fatigue. It proposed a unique 

approach using a reverse Plutchik's paraboloid of emotions model for emotion recognition 

through facial expression analysis via video cameras and external algorithms. Study [2-

38] introduced a body sensor network that utilizes real-time EEG and other sensors to 

detect human emotions, mainly focusing on tiredness and stress, which are pertinent to 

traffic accidents. The findings suggest the feasibility of quantifying drivers' emotions and 

the role of such architectures in accident prevention by continuously monitoring driver 
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emotions. Non-Invasive Monitoring Methods: Research [2-39] presented a non-intrusive 

and non-distracting technique for monitoring driver emotions and fatigue, employing 

ECG, GPS, and other data collected from wearable sensor systems.  

These sensor networks primarily focus on expressing emotions through biometric 

signals using two or three types of sensors, emphasizing fatigue or stress measurement. 

2.6. Conclusion 

Assessing a driver's mental state is an intricate and multifaceted task, demanding 

diverse methodologies. Current research presents various approaches, each offering 

distinct advantages and inherent limitations. Though providing valuable insights, self-

reporting questionnaires often uncover needs to be more consistent when juxtaposed with 

objective metrics, particularly in high-pressure scenarios. Investigations employing 

single-sensor modalities like EEG or ECG demonstrate potential for real-time emotion 

monitoring. Yet, they grapple with challenges about data variability and the necessity for 

sophisticated analytical tools. Conversely, decentralized networks utilizing multiple 

sensors are proficient in detecting a broad spectrum of emotional states, with a notable 

emphasis on identifying fatigue and stress, pivotal factors in driving safety. Consequently, 

an all-encompassing approach to analyzing drivers' mental conditions should incorporate 

diverse data sources, including physiological signals, facial expressions, and subjective 

self-reports.  

Recognizing these insights, adopting a multifaceted strategy becomes essential for 

effectively analyzing drivers' mental conditions. This approach should encompass various 

sensors and data sources, including physiological signals, facial expressions, and self-

reports. It requires an integrated analytical approach that effectively merges qualitative 

insights derived from self-reports with the quantitative accuracy of sensor data. 

Chapter 3 will explore the development of an advanced sensor network specifically 

designed for driving contexts. This network will integrate the strengths of various 

methodologies, focusing on detecting a wide array of emotional states and the precise 

assessment of critical conditions such as driver fatigue. This integrated system aims to 

augment our comprehension of drivers' mental conditions by bridging the divide between 

different research methodologies, thereby creating safer and more responsive driving 

environments. 
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Chapter 3 

Driver Mental State Estimation System 

3.1. Objective of the System 

As mentioned in Chapter 2, this research is dedicated to formulating an integrated 

methodology for assessing a driver's mental state, focusing on quantifying driver fatigue. 

The cornerstone of this approach is a sophisticated sensor network meticulously 

engineered to collect and integrate a wide array of biosignal data. This network 

encompasses a variety of parameters, including body movements, electrocardiogram 

(ECG), electroencephalogram (EEG), heart rate, facial expressions, and critical indicators 

of driving performance such as steering behavior, braking actions, and accelerator usage. 

Figure 3-1 illustrates the primary data types monitored during driving scenarios.  

Additionally, this system captures comprehensive data related to driving operations, 

encompassing metrics such as accelerator pedal positioning, brake pressure, vehicle 

velocity, and acceleration. These objective data sources are further complemented by 

subjective data acquired through meticulously structured questionnaire surveys. The 

overarching objective of this system is to achieve a nuanced and precise quantification of 

driver fatigue by analyzing this complex tapestry of multi-modal data. Integrating these 

diverse data streams is anticipated to yield a robust and reliable framework for assessing 

driver mental state, ultimately enhancing driving safety and performance.  

 

Figure 3-1. Fundamental data collected during this research 
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3.2. Sensor Network 

 The selection of specific sensors, as outlined in Table 3-1, was made to fulfill the 

objectives set forth in the experimental design.   

3.2.1. Outline of the Sensor Network 

The architectural framework of the system employed in this study is elucidated in 

Figures 3 and 2. This diagrammatic representation delineates the dual sectors of the sensor 

network: the upper sector focuses on sensors near the human subject. In contrast, the 

lower sector is devoted to data acquisition from the driving simulator. Additionally, Figure 

3-3 presents a graphical depiction of the placement of wearable sensors on the body. 

Data transmission from these sensors is facilitated through Bluetooth Low Energy 

and standard Bluetooth protocols, directing the data flow to recording devices such as 

M5Stack units and personal computers (PCs). Subsequently, this data is stored on Secure 

Digital (SD) cards, enabling offline integration and subsequent analysis on a PC, which 

Table 3-1. Vital sensors and data 

Vital sensors Sensor data 

Driving 

simulator 

Speed, Acceleration, Brake pedal pressure, Steering angle, 

Distance 

Accelerometer Body movement 

ECG Heart signal 

EEG Brainwave 

Heart rate 

monitor 
Heartbeat pulse 

Drive recorder Facial expression, Body movement, Posture 

Eye tracker Eye movement 
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are measures taken primarily for security considerations. The system incorporates a video 

camera and an eye tracker to complement this setup and monitor the subject's alertness 

and eye movement patterns. Simultaneously, the driving simulator is equipped to record 

crucial driving performance metrics, including pedal positioning, brake pressure, steering 

angle, vehicle speed, and acceleration. These parameters are captured via a Controller 

Area Network (CAN) as referenced in [3-1]. The collected data from these varied sources 

are then methodically compiled and analyzed to identify and understand the interrelations 

among these diverse datasets. This intricate setup captures a comprehensive data set to 

detect fatigue-induced changes in a driver's behavior and physiological state. 

3.2.2. Specification of Vital Sensors  

(1) Driving Simulator 

Advanced driving simulation systems facilitate a realistic emulation of driver 

interactions within simulated scenarios, serving as entertainment platforms and as integral 

tools in driver education programs within academic and private sectors [3-2]. Beyond 

their educational utility, these systems are instrumental in diverse research domains, 

including human factors and medical studies, where they analyze driver behavior, 

performance, and attention. In the automotive industry, Driver safety systems are pivotal 

for developing and assessing new vehicle designs and the evolution of Advanced Driver 

Assistance Systems (ADAS). These systems offer controlled, replicable laboratory 

settings essential for testing and validating the increasing multitude of user interfaces and 

ADAS technologies. 

Figures 3-4 depict a representative model of a DS. In our study, the DS was in a 

dedicated experimental chamber equipped with a 180-degree panoramic projection screen 

capable of dynamically adjusting lighting conditions to simulate various driving 

environments. Automotive data metrics such as vehicle speed, steering angle, brake 

pressure, and accelerator pedal position were captured at 50 samples per second through 

a CAN designed for seamless inter-device communication. 

(2) Accelerometer  

  Participant body movement was quantified using multiple accelerometers, 

specifically the WT901BLECL model [3-4], as illustrated in Figure 3-5. This 

accelerometer is proficient in measuring parameters like acceleration, angular velocity, 

angle, and orientation. It incorporates a Bluetooth Low Energy (BLE) 5.0 communication 

module [3-5], notable for its reduced power consumption, thus extending operational time 

to over 10 hours. Data captured by this accelerometer is relayed to an M5 Stack [3-6], a 

compact processing unit compatible with mobile battery operation.  
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Figure 3-2. System diagram for experiments 

 

 

Figure 3-3. Diagram of wearable sensors 
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Figure 3-4. Example of driving simulator [3-3] 

 

 

Figure 3-5. Accelerometer for body movement detection 
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(3) EEG 

Brainwave activity was monitored using a non-invasive EEG sensor by Mindsall Inc 

[3-7]. This sensor, as depicted in Figure 3-6, captures EEG data 10 times per second from 

the frontal lobe through contact points at the forehead and ears, with the transmitted data 

being collected in an M5Stack.   

(4) ECG 

An ECG sensor, also developed by Mindsall Inc., was employed for detailed cardiac 

signal acquisition. Data from this sensor were likewise transmitted to an M5 Stack. The 

ECG sensor was strategically integrated into the vehicle's steering mechanism, ensuring 

continual contact with the driver's fingers. 

(5) Heart Rate Sensor  

Heart rate measurements during the driving simulations were conducted using an 

Apple Watch [3-8] (Figure 3-7) positioned on the participant's wrist. This device employs 

a photoplethysmography sensor for continual heart rate monitoring, with data 

computations executed by an integrated application at one-minute intervals. 

(6) Drive recorder 

We incorporated a high-definition drive recorder, with specifications of 1920 × 1080 

resolution and a 23-fps frame rate, mounted at the front of the DS. This recorder, 

positioned approximately 1 meter from the driver at a 30-degree angle relative to the 

driver's face, efficiently captured facial expressions, body movements, and incident 

records during the simulation.   

(7) Eye tracker 

We utilized an eye tracker for precise ocular movement tracking, as shown in Figure 

3-8. This device uses the dark pupil technique and a 3D model for accurate monitoring 

capable of both binocular and monocular modes. It features a 5-point calibration system 

with multiple methods and compensates for slippage using the 3D model. The device 

achieves 0.60º accuracy and 0.02º precision and includes two eye cameras and a scene 

camera with various resolution options (up to 1080p at 30 Hz). It supports 3D and 2D 

gaze and pupil measurements, requires a USB-C connection, and operates with desktops 

or laptops running Pupil Core software. Real-time data is managed through Pupil Capture 

software with interference for gaze data, pupillometry, and videos, while post hoc analysis 

is conducted via Pupil Player software. 
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Figure 3-6. Headband-style EEG sensor  

 

Table 3-2. List of brainwave data 

Frequency band Frequency Brain states 

Delta 0.5–4 Hz Sleep 

Theta 4–8 Hz Deeply relaxed, inward focused 

Alpha 8–12 Hz Very relaxed, passive attention 

Beta 12–35 Hz 
Anxiety dominant, active, external 

attention, relaxed 

Gamma 
Over 

35 Hz 
Concentration 
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3.3. PANAS Questionnaire Survey 

The Positive and Negative Affect Schedule (PANAS) represents a psychometrically 

robust self-report instrument comprising two distinct 10-item scales, each meticulously 

designed to assess the dichotomous realms of positive and negative affect quantitatively. 

Renowned for its reliability and validity, PANAS is an indispensable tool in empirically 

evaluating affective states, effectively gauging the spectrum of mental experiences.  

In our experimental framework, it was implemented as a pivotal tool for estimating 

emotional states in both pre-and post-experimental conditions. The PANAS instrument 

encompasses a carefully curated array of adjectives, each chosen to encapsulate specific 

emotional states. These descriptors include: 'Strong,' 'Inspired,' 'Active,' 'Enthusiastic,' 

'Interested,' 'Excited,' 'Proud,' 'Alert,' 'Determined,' 'Attentive' to delineate positive affect; 

and 'Afraid,' 'Scared,' 'Upset,' 'Ashamed,' 'Guilty,' 'Nervous,' 'Distressed,' 'Irritable,' 

'Jittery,' 'Hostile' to represent negative affect. Participants were required to rate their 

emotions on a five-point scale, serving as subjective indicators of their affective state (as 

illustrated in Figure 3-9). This personal emotional data was then meticulously compared 

against other quantitative datasets, thereby enabling a holistic understanding of the 

emotional impacts of the experimental conditions.  

 

Figure 3-7. Apple Watch for heart rate detection 
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Figure 3-8. Eye tracking device [3-10] 

 

 

Figure 3-9. Example of PANAS questionnaire 
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Chapter 4 

Methodological Approach for Data Processing 

This section explains the detailed methods implemented to process the main data 

collected from the driver emotion monitoring system for mental state estimation.   

4.1. FFT Algorithm for Brainwave 

The Fast Fourier Transform (FFT) is indispensable in brainwave data analysis due 

to its efficiency in transforming time-domain signals into the frequency domain, enabling 

precise characterization of brainwaves. Its computational expediency is crucial for 

managing large datasets, a common challenge in neuroscientific research. FFT's role in 

signal processing extends to noise reduction and artifact filtering, enhancing data quality. 

Additionally, its ability to maintain temporal resolution allows for examining dynamic 

brain activities. The application of FFT facilitates spectral analysis, which is crucial for 

assessing power distribution across different frequency bands, and its standardization aids 

in comparative studies. This multifaceted utility underscores FFT's vital role in advancing 

the understanding of brain function and clinical diagnostics within neuroscience.  

 In the EEG sensor, a brainwave sensor was used, whose chip detects brainwave 

data and mainly calculates β wave (attention, 8–14 Hz), α wave (mediation, 14–30 Hz), 

and γ wave (excitement, above 30 Hz) values. We used the FFT algorithm to calculate the 

three kinds of values every second as a temporal sequence to estimate the change of 

emotion state more easily. 

 

Figure 4-1. Transformation of brainwave by FFT 
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4.2. Persistent Homology for Brainwave 

Persistent homology constitutes an analytical approach in computational topology 

aimed at identifying and quantifying topological characteristics of space across varying 

spatial resolutions [4-1]. This method operates under the premise that topological features 

that exhibit persistence over an extensive range of spatial scales are more indicative of 

the intrinsic properties of the underlying space. Such features are considered less likely 

to result from sampling errors, noise, or biases introduced by the selection of specific 

parameters. This approach distinguishes meaningful topological information and artifacts 

from the aforementioned external factors. 

 To provide some intuition for the persistent homology, let us consider a typical way 

of constructing persistent homology from data points in an Euclidean space, assuming 

that the data lie on a sub-manifold. The aim is to infer the underlying manifold's topology 

from finite data. We consider the r-balls (balls with radius r) to recover the manifold's 

topology, as popularly employed in constructing an r-neighbor graph in many manifold 

learning algorithms. While it is expected that, with an appropriate choice of r, the r-ball 

model can represent the underlying topological structures of the manifold, it is also known 

that the result is sensitive to the choice of r. If r is too small, the union of r-balls consists 

of the disjoint r-balls. On the other hand, if r is too large, the union becomes a contractible 

space.  

Persistent homology can consider all r simultaneously and provides an algebraic 

expression of topological properties and their persistence over r. The persistent homology 

 

Figure 4-2. The union Xr of r-balls at points sampled with noise [4-2] 
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can be visualized in a compact form called a persistence diagram D = {(bi , di ) ∈ R2 | i 

∈ I, bi ≤ di}, and this paper focuses on persistence diagrams since the contributions of 

this paper can be fully explained in terms of persistence diagrams. Every point (bi, di) ∈ 

D, called a generator of the persistent homology, represents a topological property (e.g., 

connected components, rings, and cavities), which appears at Xbi and disappears at Xdi in 

the r-ball model. Then, the persistence di − bi of the generator shows the robustness of 

the topological property under the radius parameter.  

Persistent diagram is an analytical tool for visualizing data derived from persistent 

homology. This diagram is a graphical representation structured with two principal axes, 

namely 'Birth' and 'Death,' that delineate the emergence and dissolution of topological 

features within a dataset. As illustrated in Figure 4-3, the 'Birth' axis, positioned 

horizontally, marks the inception of a topological part, typically a hole, as observed from 

an initial, localized perspective of the data set. Conversely, the 'Death' axis, oriented 

vertically, signifies the point at which this topological feature ceases to exist, correlating 

with a transition from a local to a more comprehensive, global view of the data. The 

discrete points plotted on the diagram correspond to these topological features, with their 

spatial relationship to the 'Birth' and 'Death' axes indicating the respective moments of 

their appearance and disappearance. Critically, components of substantial significance are 

denoted by points that lie considerably distant from the diagonal line where 'Birth' equals 

'Death.' Such features, persisting over a broad spectrum of scales, are less likely to be 

 

Figure 4-3. Sample of Persistent Diagram 
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attributable to noise, thus highlighting their potential importance in the underlying data. 

We use HomCloud [4-3], a tool for visualizing persistence, to create a 3D graph of 

Alpha, Beta, and Gamma waves for relation analysis.   

4.3. PANAS Item Evaluation 

In our methodological examination of the data derived from PANAS, we adopted a 

comprehensive and systematic approach. The initial phase involved independently 

scoring the PANAS responses for positive and negative affect domains. This phase was 

followed by computing descriptive statistics, illuminating overarching trends in affective 

states. For each item on the PANAS questionnaire, whether indicative of negative or 

positive affect, a score ranging from 1 to 20 was assigned based on the drivers' markings. 

We meticulously observed and calculated the average negative and positive effect values. 

Our study's crucial aspect was comparing these average values and assessing their 

variation from pre- and post-experiment phases. This comparison offered a nuanced 

understanding of the changes in affective states, potentially attributable to the 

experimental conditions or interventions. 

To ensure the reliability of these scales, a measure that guarantees the consistency 

and dependability of the measurement instruments is applied. An essential component of 

our analysis also included evaluating the distributional properties of the data, a critical 

step in determining the suitability of various statistical tests for subsequent studies. Our 

approach further encompassed a correlational detailed survey. This facet of our research 

aimed to uncover the intricate relationships between affective scores and other pertinent 

variables. Such an analysis provides a deeper understanding of the underlying 

psychological dynamics. 

4.4. Recognition Method for Facial Expression 

Facial expressions are integral to manifesting emotions; body movements often 

reflect psychological states. Our research focuses on facial expression recognition, 

utilizing computational techniques to analyze these expressions. Recognizing the 

resource-intensive nature of large-scale machine learning models, we propose an efficient, 

cost-effective approach. This approach involves leveraging an open-source facial 

detection model combined with the K-Means clustering algorithm [4-4]. This preliminary 

classification of facial expressions integrates data from the DS's operational metrics and 

visual information from a drive recorder.   
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4.4.1. Facial Image Pre-processing 

We utilize OpenCV [4-5] for video processing and MediaPipe Face Mesh [4-6] for 

landmark detection in facial expression classification. The pre-processing stage involves 

identifying facial landmarks - specifically around the eyes, nose, and mouth to facilitate 

expression recognition [4-7]. Given the transient nature of facial movements, a rapid and 

precise face detection model is crucial. Our methodology employs the MediaPipe Face 

Mesh, offering real-time, high-accuracy detection of 468 facial landmarks with minimal 

input requirements. 

We decided to use the MediaPipe Face Mesh solution, which provides a high-

accuracy face detector and estimates 468 face landmarks in real-time, requiring only a 

single camera input to achieve our goal. To evaluate the performance of the MediaPipe 

face detector, The accuracy of this model is assessed by calculating the Face Detection 

Rate (FDR) across six video recordings. Let the number of frames of a video be Ni, and 

the number of frames where the driver's face is detected in the video be Ndi. We can 

calculate FDR in the following way. 

𝐹𝐷𝑅 =
∑ 𝑁𝑑𝑖

∑ 𝑁𝑖

(1) 

where i{1, 2, … 6}. 

The result shows that the driver's face is present in every video frame, and our 

analysis indicates a meager false detection rate, under 0.1%. Consequently, in our 

experimental setup, the False Detection Rate (FDR) is approximately equivalent to the 

Mean Average Precision (mAP) [4-8]. However, challenges arise due to the dim interior 

lighting within the seat, potentially hampering the effective detection of the driver's facial 

outline. Analysis of video samples reveals an FDR of 24.90%, indicating that the driver's 

face was undetected in most instances. To mitigate this issue, we employed OpenCV to 

modify the contrast and brightness of the facial images, aiming to identify an optimal set 

of parameters for enhanced face detection. The image processing is defined 

mathematically: let f (x, y) represent the pixel values of the source image, and let g (x, y) 

denote the pixel values of the processed output image. The image brightness and contrast 

adjustment is achieved through the following mathematical expression.  

The subdued lighting within the driver's seat presented a significant challenge for 

facial outline detection. Our results indicate that the False Detection Rate (FDR) for six 

video samples was 24.90%, signifying that, in most instances, the detector did not 

accurately detect the driver's face. To address this issue, we used OpenCV to adjust the 

facial images' contrast and brightness to identify an optimal parameter for improved face 
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detection. The mathematical representation of this image processing is as follows: let f (x, 

y) denote the pixel values of the original image, and g (x, y) represent the pixel values of 

the adjusted output image. The subsequent expression governs the modification of image 

brightness and contrast.   

𝑔(𝑥, 𝑦) = 𝛼 ⋅ 𝑓(𝑥, 𝑦) +  (2) 

where x and y indicate that the pixel is located in the x-th row and y-th column.  

The parameter α, which controls contrast, was varied between 0 and 3, while the 

parameter β, influencing brightness, ranged from 0 to 100. An exhaustive analysis was 

conducted for each parameter set, and the FDR was calculated. A subset of these results 

is presented in Table 1, showcasing the FDR for α values between 1.0 and 2.0 and β values 

from 0 to 50. The data reveals a peak FDR of 63.75% at α=1.5 and β=35. However, this 

detection level was deemed insufficient for accurate expression recognition and 

necessitated further comprehensive analysis. It is hypothesized that the MediaPipe 

detector's inability to discern the driver's facial outline, exacerbated by extraneous visual 

noise, contributed to the low FDR. To enhance the FDR, we implemented a method of 

segmenting images and manually refining the recognition scope. As depicted in Figure 4-

2, the recognition area was explicitly confined to around the driving seat, with a resolution 

of 700 × 700 pixels. This approach yielded a significantly improved FDR of 95.35% at 

α=1.5 and β=35, a satisfactory level for subsequent analyses. 

4.4.2. Expression Classification 

The efficacy of facial expression recognition through dividing facial landmarks into 

distinct regions has been corroborated, displaying notable accuracy as indicated in the 

literature [4-9] [4-10].  

Figure 4-4 illustrates our methodology for extracting 42 specific landmarks, 

designated as P1,1, P1,2, …, P1,20 in the mouth region, P2,1, P2,2, …, P2,11 in the left eye 

region, and P3,1, P3,2, …, P3,11 in the right eye region, which serve as fiducial points on the 

face. To quantify the variation of these landmarks with facial expressions, we established 

a unique origin point within each region (highlighted as red points in Figure 4-4). The 

distance Dij between each landmark and its corresponding origin point in a frame where a 

face is detected is calculated using the following expression: 

𝐷𝑖𝑗 = |𝑃𝑖𝑗(𝑥, 𝑦) −
1

𝑁𝑙
∑ 𝑃𝑖𝑗(𝑥, 𝑦)| (3) 

where j  {1, 2, … 20} and 𝑁𝑙 = 20 when i = 1; j  {1, 2, … 11} and 𝑁𝑙 = 11 when i 

= 2 or 3. 

Consequently, we aggregate these distances into a feature vector V for each frame 
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where a face is recognized, enabling the classification of facial expressions based on 

vector data: 

𝑽(𝐷1,1, 𝐷1,2, … , 𝐷𝑖𝑗 , … , 𝐷3,11) (4) 

 Given facial expressions' complexity, intensity, and unpredictability, we employed 

K-Means clustering to analyze the multi-dimensional data pertinent to facial classification. 

 

Figure 4-4. Recognition scope fixed around driving seat 

 

Table 4-1. Parts of FDR with different parameter sets 

 0 5 15 25 30 35 45 50 

1.0 24.90 24.98 26.58 28.51 31.49 30.97 34.91 35.30 

1.1 29.02 29.98 31.83 32.80 34.91 35.00 36.99 37.91 

1.2 31.74 32.98 34.23 35.29 34.96 36.23 39.86 42.78 

1.3 36.03 37.61 40.35 42.64 44.03 43.98 45.25 45.21 

1.4 44.64 47.92 52.08 51.94 53.09 53.24 55.02 51.24 

1.5 50.95 53.50 55.75 59.01 62.55 63.75 61.55 60.43 

1.6 48.02 49.23 53.26 55.93 56.22 57.04 56.24 56.37 

1.7 46.63 45.94 49.08 54.66 54.95 56.37 52.08 49.42 

1.8 40.82 42.88 47.84 50.38 53.90 53.01 48.08 45.39 

1.9 37.03 39.95 46.37 50.08 50.73 48.63 45.15 42.49 

2.0 35.23 34.96 43.95 42.91 43.85 41.87 41.73 37.35 

 



36 

 

Without prior knowledge of the specific facial expressions manifested during driving, we 

categorized the images into six classes. These classes correspond to the six primary facial 

expressions delineated in basic emotion theory: happiness, sadness, anger, fear, surprise, 

and neutral. The image dataset was subsequently partitioned into six clusters. The Scikit-

Learn Python library [4-11] was utilized for this data processing. 

 

 

 

 

Figure 4-5. Landmarks detected from facial expression [4-7] 

 

Table 4-2. Computational parameters for clustering 

Number of clusters  n_clusters = 6 

Maximum number of iterations max_iter = 300 

Number of times of centroid initialization  n_init = 10 

Allowable error of convergence tol = 0.0001 
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4.5. Body Movement Measurement 

In addition to facial expression analysis, we explored body motion measurement 

through video imaging, focusing on head and hand movements. Body motion and posture 

are instrumental in conveying emotional information in daily contexts [4-12]. However, 

the confined driving posture presents challenges for detecting body motion, as the in-car 

video recorder cannot capture the entire body, which is crucial for pose landmark 

detection. As a viable alternative, we computed the coordinates of the head H (x, y) as a 

pivotal point for body motion assessment. 

𝐻(𝑥, 𝑦) =
1

42
∑ 𝑃𝑖𝑗(𝑥, 𝑦) (5) 

Thus, we can evaluate the motion intensity of head Mt by calculating the absolute 

value of the difference between H (x, y) and its mean value for a frame in time t. 

𝑀𝑡 = |𝐻𝑡(𝑥, 𝑦) − 
1

𝑁𝑓
∑ 𝐻𝑡(𝑥, 𝑦)| (6) 

where 𝑁𝑓 is the number of frames of a video. 

Hand motions are also indicative of mental and emotional states. For instance, 

drivers often engage in self-touching behaviors, such as touching their face or hair, when 

experiencing boredom. These motions were identified manually, with the corresponding 

occurrence times recorded, revealing several instances of such behaviors. 

4.6. Eye Movement Measurement 

Eye tracking technology represents an advanced integration of optical tracking and 

computational analytics for eye movement measurement. It utilizes an ocular camera and 

eye tracking device for real-time capture of eye movements, enhanced by algorithms for 

dark pupil tracking and 3D visual modeling, ensuring high accuracy. A vital feature of the 

system is its ability to autonomously detect eyelid dynamics, such as blinks and closures, 

crucial for assessing fatigue through blink frequency, which correlates with cognitive 

strain. The blink detection algorithm categorizes blink patterns for immediate and 

retrospective analysis, offering insights into mental workload and stress levels from blink 

rate data. 

Considering dispersion and duration thresholds, this method provides a 

comprehensive framework for analyzing visual attention and cognitive processing. 

Specifically, monitoring driver fatigue focuses on eye closure and blink frequency to 

assess fatigue levels effectively in real-time operational settings.  
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Chapter 5 

Experimental Design and Data Analysis  

5.1. Research Overview 

5.1.1. Objectives of the Research 

(1) Research goal 

The primary goal of this research is to develop and validate a decentralized, 

systematic framework for accurately determining drivers' mental states, with a particular 

focus on identifying signs of fatigue. We achieve it by devising and executing a 

comprehensive sensor network that gathers a wide array of bio-signal data from 

individuals operating automotive vehicles. The network integrates various technologies, 

including a high-fidelity driving simulator, accelerometer, heart-rate monitor, EEG sensor, 

video camera, and eye tracker. The aim is to enhance vehicular safety by providing a more 

holistic and precise method of assessing drivers' mental conditions, especially during the 

critical transitional period preceding the widespread adoption of autonomous vehicles. 

(2) Sequential research methodology 

We have meticulously structured our research methodology into several sequential 

phases to attain the stated research objectives. This systematic approach is designed to 

ensure the thoroughness and accuracy of our study, as detailed in the following steps.   

⚫ Step 1: Development of an Integrated Sensor Network 

The foundational phase entails establishing a sophisticated sensor network. This 

network integrates a high-fidelity driving simulator and bio-signal sensors, including 

accelerometers, heart-rate monitors, and EEG sensors. The amalgamation of these varied 

technologies is vital for capturing a broad spectrum of data, which reflects the driver's 

physiological and operational states. 

⚫ Step 2: Data Collection Under Diverse Conditions 

The subsequent phase is the systematic data collection upon the network's 

establishment. Participants will operate vehicles within the simulator across a variety of 

driving conditions. This stage is dedicated to methodically compiling operational metrics 

from the DS alongside physiological data from the sensors, encompassing parameters 

such as brainwave activity, heart rate, facial expressions, and body movements. 



39 

 

⚫ Step 3: Data Analysis Employing Advanced Methodologies 

The amassed data will undergo comprehensive analysis. We propose applying 

sophisticated statistical methods, as existing techniques may prove insufficient or 

inappropriate for this research due to their inherent limitations. 

⚫ Step 4: Integration of Psychometric Assessment Tools 

Given the potential unreliability and insufficiency of solely relying on sensor data 

for estimating drivers' mental states, the integration of a self-report survey assessing 

mental states is under consideration. This psychometric tool is anticipated to augment the 

accuracy of mental condition evaluations derived from bio-signals, thereby offering a 

more holistic assessment of the driver's psychological state. 

⚫ Step 5: Cross-Referencing and Validation of Findings 

The results obtained from sensor data and psychometric evaluations will be cross-

referenced to validate the accuracy of the mental state estimations. This crucial step aims 

to verify the precision of fatigue determinations and to authenticate the comprehensive 

assessments of drivers' mental conditions. 

⚫ Step 6: Evaluation and Refinement 

The final phase involves appraising the efficacy of the sensor network in discerning 

driver fatigue and other mental conditions. This stage will also address challenges 

encountered during the research process, including issues with sensor accuracy or data 

anomalies. Evaluating the identified correlations among the data and systematically 

addressing any experimental difficulties is imperative in refining the research 

methodology. 

(3) Experimental design 

Our study explicitly selects participants of varying genders and driving experiences 

to acquire a diverse range of experimental data for comprehensive analysis and 

comparison. Moreover, to enrich the dimensions of our data, we implement a variety of 

experimental conditions throughout the research process. This strategic approach is 

intended to ensure that the collected data comprehensively reflects the responses and 

behaviors of different demographic groups under various driving environments, thereby 

enhancing the accuracy and reliability of the research findings. 

⚫ Participant Demographic 

The experimental cohort comprised male and female students enrolled at Chuo 

University, predominantly in their twenties. These participants were stratified into two 

groups based on their familiarity with driving: one group consisted of individuals 

experienced in driving, while the other included those with minimal or no driving 

experience. Each group was subjected to a pair of driving simulations under identical 
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vehicular conditions to ensure experimental consistency. 

⚫ Experimental Condition 

The driving simulations were conducted on two meticulously designed courses: the 

Tokyo Metropolitan Highway (C1) and a local Paris Road. The specific parameters of 

these simulations are detailed in Table 3-3. In the C1 scenario, an experimental variable 

altered ambient brightness levels during the driving simulation. Conversely, the Paris 

Road simulation utilized the Simulation of Urban Mobility (SUMO) [5-1] platform to 

introduce dynamic elements such as variable traffic conditions and unpredictable 

pedestrian behaviors, mimicking real-world driving challenges. 

 Before and following each simulation, participants complete the PANAS 

questionnaire, which includes ten items each for assessing positive and negative affective 

states. The examinee did this survey to ascertain the psychological impact of the driving 

experience on the participants. As delineated in Figure 4, there was a notable elevation in 

the scores of the negative affective responses post-simulation, suggesting a consistent 

trend of increased fatigue or stress following 45 minutes of driving. This outcome 

underscores the potential psychological impact of prolonged driving under varying 

environmental conditions and offers valuable insights into driver well-being and safety. 

Table 5-1. Detail of test courses in the driving simulator 

Course Time/round SUMO Brightness change 

Tokyo 

Metropolitan 

Highway C1 

10 min No 

 

 

 

 

 

 

 

 

Paris City 

Area Course 
6 min 

Other traffic, 

Pedestrian 

crossing road 

No 

 

0-10 min  

10-20 min   

20-30 min  

30-40 min  

40-45min 

4 PM 

6 PM 

7 PM 

7:30 PM 

8 PM (with 

illumination) 
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Figure 5-1. Tokyo Metropolitan C1 Expressway (red line) 

 

Figure 5-2. Roads in Paris (red line) 
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5.1.2. Previous Studies 

(1) Overview of previous studies 

In fiscal year 2019, We developed a sophisticated sensor network to assess drivers' 

mental states during driving, with the primary objective of enhancing road safety [5-2]. 

This network comprises a variety of sensors: accelerometers for detecting head motion, 

electrocardiogram (ECG) sensors, electroencephalogram (EEG) sensors, and heart rate 

monitors. These are augmented by data from a driving simulator, which captures vital 

vehicular metrics such as speed, steering wheel angle, brake pressure, and other relevant 

driving performance indicators. The convergence of these data streams provides a holistic 

overview of the driver's mental state by integrating biological signals and behavioral 

patterns. 

The previous study explored the interplay between bio-signal and operational 

driving data, uncovering correlations between biological signals and psychological states. 

Notably, heart rate and EEG metrics emerged as potential indicators of stress levels in 

varying driving contexts. The preliminary findings suggest that the sensor network 

effectively gathers pertinent data, particularly emphasizing the value of ECG and heart 

rate measurements in deducing emotional states. This study lays the groundwork for 

future in-depth investigations of driver mental states and the evolution of a more 

streamlined, practical sensor network for real-world application. 

(2) Problems occurred in previous studies 

Despite these advancements, the project encountered several practical challenges, 

especially in implementing EEG and ECG sensors. Multiple factors influence the 

reliability of EEG data, and the intrusive nature of EEG equipment hinders its integration 

into standard driving environments. Those problems highlight the necessity for more 

practical, durable, and cost-efficient sensor alternatives to complement or replace EEG 

sensors, thereby ensuring the viability of this technology in everyday driving conditions. 

5.1.3. Methodological Framework for Upcoming Experiments 

Considering the challenges identified in the preceding study, it is imperative to adopt 

strategies that address these issues to enhance the accuracy and reliability of the data 

collected from the established sensor network. A primary measure to be considered is 

incorporating a self-report survey methodology. This approach would involve participants 

providing subjective feedback on their mental state, serving as a means to validate and 

cross-reference the physiological data obtained from the sensor network. Such a method 
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can help assess the correlation between the subjective experiences of drivers and the 

objective data captured by the sensors, thereby increasing the credibility of the findings. 

Furthermore, integrating additional sensors into the existing network is recommended to 

improve the precision of assessments regarding drivers' mental states. Introducing new 

sensors, possibly ones that are less intrusive and more advanced in technology, can 

provide a more nuanced understanding of the psychological and physiological aspects of 

driving. This setup could include sensors that monitor eye movement, skin conductivity, 

or even facial expressions, each potentially serving as a novel indicator of mental states. 

By broadening the scope of data collection, the study can achieve a more comprehensive 

and multi-dimensional understanding of drivers' mental conditions, thus paving the way 

for more accurate and reliable safety measures in the context of vehicular operation. 

In this research, we comprehensively evaluate the performance of various sensors 

within both experimental and practical settings. This evaluation aims to understand these 

sensors' efficacy and reliability in real-world applications. Furthermore, we engage in a 

detailed analysis of the biosignals data acquired from these sensors. The primary objective 

of this analysis is to investigate the correlation between the biosignals and an individual's 

mental state. Through this investigation, we aim to identify a more feasible and accurate 

index for assessing mental states. This endeavor is crucial for understanding the 

interaction between physiological markers and psychological conditions. 

  

 

Figure 5-3. Framework of this research 
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5.2. Assessment of Mental State by Comparative Data Analysis 

5.2.1. Research Objective 

 Expanding upon the insights from Section 5.1, we estimate drivers' mental states 

using data from the sensor network. The primary objective is to validate the accuracy and 

reliability of these mental state estimations by incorporating a self-report survey 

methodology. This validation process entails a comprehensive comparative analysis, 

juxtaposing driving performance data with self-reported mental states as quantified by 

PANAS. The goal is to establish a correlation between objective sensor data and 

subjective self-assessments, reinforcing the sensor network's credibility and effectiveness 

in evaluating drivers' mental states. 

5.2.2. Experimental Method 

In Fiscal Year 2021, We refined the research methodology to incorporate a dual 

approach: employing the PANAS-based emotion estimation alongside a five-level 

emotion rating scale for subjective assessments, as documented in Reference [5-3]. The 

 
Figure 5-4. Diagram of sensor network implemented in FY2021 
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focal point of the study was to quantify mental states by establishing a correlation between 

driving performance data and PANAS responses, thereby verifying the accuracy of the 

sensor network's predictions. A congested traffic course was designed to test participants 

under stress-inducing scenarios to emulate real-world driving conditions. The experiment 

featured advanced heart-rate monitors, accelerometers, and brainwave sensors for 

comprehensive data collection. Figure 5-4 illustrates the schematic layout of our sensor 

network. The experimental scope was also broadened to include simulated driving 

situations on the Metropolitan Expressway and in urban settings [5-4], encompassing 

diverse traffic scenarios such as congestion, traffic light waits, and sudden vehicle 

maneuvers. A single participant was involved in this phase to assess the effectiveness of 

data acquisition from the integrated sensor network.  

5.2.3. Result Analysis 

(1) Mental state measurement from heart rate data 

Heart rate data, presented in Figure 5-5, further elucidates the physiological 

responses across different trials: Trial 1 (11:35~12:20), Trial 2 (13:30~14:15), Trial 3 

(15:00~15:45) deviated from this pattern. During this trial, the driver encountered three 

accidents, leading to notable spikes in heart rate coinciding with each collision event, 

which suggests a direct impact of stressful events on physiological state during driving. 

(2) Mental state measurement from PANAS data 

Analysis of emotional responses, as depicted in Figure 5-6, was conducted using 

questionnaires. The mood indices predominantly declined post-driving during the first 

and second trials. This trend suggests that the driver experienced significant fatigue after 

45 minutes of driving. Conversely, the mood indices did not demonstrate a similar decline 

in the third trial. This anomaly could be attributed to two factors: the occurrence of 

multiple accidents during the drive potentially sustained heightened emotional responses, 

and the anticipation of completing the final trial may have positively influenced mental 

states. 

(3) Mental state measurement from brainwave data 

Figure 5-7 presents the correlation between emotional estimations and the PANAS 

framework. The data revealed an increasing trend in attention ratios from Lap 2 to Lap 4, 

aligning with the PANAS-derived mood indices' upward trajectory post-driving. This 

alignment underscores the PANAS framework's effectiveness in evaluating drivers' 

emotional states. 
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Figure 5-5. Heart rate variation in four trials 
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5.2.4. Conclusion 

The outcomes of this research demonstrate the effectiveness of PANAS as a robust 

tool for assessing the mental state of drivers. The comparative analysis, which juxtaposed 

the data from PANAS with the readings obtained from the sensor network, revealed high 

coherence between self-reported emotional states and sensor-based estimations. This 

consistency underscores the reliability of both methodologies in capturing drivers' mental 

states. Integrating self-reported emotional assessments with objective sensor data has 

facilitated a more nuanced and in-depth understanding of drivers' mental states across 

varying conditions. By combining subjective emotional feedback with objective 

physiological and performance metrics, this comprehensive approach provides a richer 

context for understanding driver behavior. 

This comprehensive analysis considerably deepens our understanding of driver 

fatigue. The findings from this study are valuable both academically and practically, 

especially in enhancing road safety and promoting driver well-being. Accurately 

assessing drivers' mental states is crucial for developing targeted interventions to prevent 

fatigue-related incidents. This proactive approach is essential for creating safer driving 

conditions. Importantly, PANAS has emerged as a viable tool for future applications in 

driver fatigue estimation. Combined with objective sensor data, its effectiveness in 

capturing subjective emotional states forms a robust foundation for advanced fatigue 

detection measures. This research marks a pivotal advancement in the field, harnessing 

the combined strengths of psychological self-assessment tools and state-of-the-art sensor 

technology to combat driver fatigue. 

 

Figure 5-6. Mental state variation based on PANAS results 
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(a) Comparison of PANAS scores pre- and post-experiment 

 

(b) Variation of attention ratio in two rounds 

 

Figure 5-7. Comparison between PANAS and attention ration 
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5.3. Assessment of Fatigue State by Driving Video Analysis 

5.3.1. Research Objective 

Addressing the limitations noted in Section 5.2, this section focuses on overcoming 

the challenges related to using ECG and EEG sensors, which are susceptible to 

environmental noise and disturbances, affecting data accuracy. The goal is to enhance the 

estimation of driver fatigue by integrating additional sensor modalities that are reliable, 

cost-effective, and highly efficient. This approach seeks to complement the existing 

sensor network with video analysis techniques to observe and interpret visual cues, such 

as facial expressions and body language, for a more robust and precise assessment of 

driver fatigue.  

5.3.2. Experimental Method 

In Fiscal Year 2022, our study embraced a holistic approach by integrating facial 

image recognition to analyze mental states, specifically focusing on driver fatigue. This 

method involved sophisticated video analysis to capture and interpret facial expressions 

and body language [5-4] [5-5]. The aim was to enhance the precision of driver fatigue 

evaluations through this multi-modal approach. High-definition video cameras were 

installed within vehicles to meticulously record drivers' facial expressions, body 

movements, and any incident occurrences. This visual data was synchronized with 

automotive metrics, including accelerator pedal position, brake pressure, steering angle, 

speed, and acceleration. Additionally, the integrated sensor network also captured vital 

biosignals, such as EEG, ECG, and heart rate. Figure 5-8 illustrates the detailed 

configuration of this sensor network.  

The experimental setup involved two female and one male student from Chuo 

University, who navigated different routes on the Tokyo Metropolitan Expressway and in 

Paris. This varied selection of driving environments was intended to elicit a wide range 

of mental and physiological responses for a comprehensive analysis. The methodological 

design aimed to validate the effectiveness of this integrated video and sensor-based 

approach by comparing its outcomes with the established PANAS framework.   
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5.3.3. Result Analysis 

(1) Relation between Facial Expression and Mental State 

Figure 5-9 presents an array of images systematically classified into six distinct 

patterns utilizing the K-Means clustering algorithm. This classification method 

efficaciously discerned four discrete mental states based on the analysis of facial 

expressions: Neutral (Figure 5-9(1), 5-9(2), and 5-9(3)), Happiness (Figure 5-9(4)), and 

Fatigue (Figure 5-9(5)). These categorizations, which are the outcome of detailed facial 

landmark analysis, demonstrate the remarkable potential of facial imaging technology in 

accurately identifying and distinguishing specific mental states. 

Figure 5-10 depicts the mental spectrum of participant (a) during the Paris driving 

simulation. This series of images encapsulates a spectrum of emotions, ranging from 

Neutral (Figure 5-10(1), 5-10(2), and 5-10(3)), to Anxiety (Figure 5-10(4)), Surprise 

(Figure 5-10(5)), and culminating in Fatigue (Figure 5-10(6)). Notably, this figure 

illustrates how certain facial expressions, such as lip clipping, are prevalently associated 

with specific driving scenarios, such as the anticipation and response to traffic signals. 

 

Figure 5-8. Diagram of sensor network implemented in FY2022 
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This correlation offers profound insights into the drivers’ mental responses and 

adaptations in varying driving contexts. 

A comparative facial expression analysis between participant (b) and participant (a) 

on the Paris driving course is detailed in Figure 5-11. This juxtaposition underscores the 

heterogeneity in facial expressions exhibited by different individuals, even when 

subjected to similar mental stimuli. The images are systematically categorized into three 

principal mental states: Neutral (Figure 5-11(1) and 5-11(2)), Anxiety (Figure 5-11(3), 5-

11(4), and 5-11(5)), and Fatigue (Figure 5-11(6)). This comparison accentuates the 

individualistic nuances in mental expression and its consequential implications on driving 

behavior and performance. 

(2) Relation between body motion and mental state 

Figure 5-12 showcases an analysis of head motion data gathered from two distinct 

driving scenarios: one featuring examinee (a) on the Paris course and the other with 

examinee (b) on the Tokyo Metropolitan Expressway course. The data, normalized to 

maximum values, illustrate head movement intensity over a 45-minute drive. 

On the Paris course, at intervals marked 00:21, 00:31, and 00:39, significant head 

movements were noted when the driver was at traffic lights, as shown in Figure 5-12(1). 

This pattern suggests that periods of inactivity (like waiting at traffic lights) could evoke 

feelings of boredom or anxiety, leading to notable changes in posture and increased head 

movement, possibly as coping mechanisms for these emotions. 

Conversely, the Tokyo Metropolitan Expressway scenario presented more 

challenging conditions, especially as the environment transitioned from day to night 

(beginning at 00:29) and during tunnel passage (around 00:40). Figure 5-12(2) indicates 

a marked rise in head motion intensity with decreasing light, peaking in the tunnel. This 

result implies increased vigilance and careful driving in low-light conditions, likely due 

to enhanced visual scanning efforts by drivers. 

Additionally, manual video analysis was conducted to monitor hand movements, 

such as touching the face or hair. As detailed in Figure 5-13, during the Paris course, 

examinee (a) was observed engaging in face-touching behaviors six times, particularly 

while stopped at traffic lights between 00:30 and 00:40. These behaviors predominantly 

occurred during the wait, suggesting that idle periods may trigger boredom, leading 

drivers to perform self-touching actions as a form of distraction or self-comfort. 
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Figure 5-9. Classification results of examinee (a) during Tokyo C1 course 
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Figure 5-10. Classification results of examinee (a) during Paris course 
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Figure 5-11. Classification results of examinee (b) during Paris course 
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(1) Examinee (a) on Paris course 

 

(2) Examinee (b) on Tokyo course 

Figure 5-12. Parts of head motion variation during two driving courses 

 

 

Figure 5-13. Comparison between head motion and driving data 
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(3) Relation between driving data and mental state 

Undertook a comprehensive comparison of facial expressions and body motions 

with automotive operating data to elucidate the correlations among these variables. 

Specifically, data from an experiment conducted on the Paris course were analyzed. This 

analysis revealed five distinct mental states: Neutral, Happiness, Fatigue, Anxiety 

(identified from facial expressions), and Boredom (inferred from manually recorded hand 

motions). These mental states were visually represented with colored dots on a timeline 

in Figure 5-14(a). Concurrently, variations in head motion were plotted in Figure 5-14(b), 

while automotive operating data, encompassing pedal usage, steering behavior, and brake 

application, were illustrated in Figures 5-14(c), (d), and (e). 

⚫ Body motion as a reflection of mental states 

The results indicate that emotions such as boredom and anxiety, particularly during 

waiting periods, are reflected in specific head and hand motions. Notably, Figure 5-14(b) 

shows that fatigue levels rise significantly after 20 minutes of driving, corresponding with 

an increase in head motion intensity from 00:20 onward. However, no significant 

deviation in head motion was observed in happiness or surprise, suggesting that body 

motions can partially infer certain mental states.   

⚫ Relevance of brake pedal pressure to fatigue 

 Analysis of Figures 5-14(a) and (b) reveals a stable facial emotion during 00:18 - 

00:19 and 00:42 - 00:43, with a gradual decrease in accelerator pedal usage. This pattern 

suggests a decline in the driver's attention and a slight increase in brake pedal usage post-

fatigue onset. Conversely, during periods of frequent mental change (00:24 - 00:26 and 

 

 Figure 5-14. Comparison between mental states and driving data 
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00:33 - 00:38), the accelerator pedal position was notably higher. These observations 

underscore the importance of mitigating driver fatigue to minimize traffic accident risks. 

⚫ Emotions as indicators of operating status 

The initial 2 minutes of the experiment showed significant variations in head motion, 

pedal position, steering angle, and brake pressure, indicating a heightened stress level in 

the driver. The steering angle exhibited two peaks within these first minutes, stabilizing 

afterward. Similarly, a gradual decrease in brake pressure was observed, suggesting 

reduced anxiety levels. Additionally, the periods 00:24 - 00:26 and 00:33 - 00:38, 

characterized by considerable variations in operating performance, imply that emotions 

like boredom and fatigue can escalate to impatience and potentially contribute to 

aggressive driving behaviors, colloquially termed road rage. 

5.3.4. Conclusion 

This chapter's research successfully quantified driver fatigue by analyzing the 

relationship between facial expressions determined through video analysis and mental 

states indicated by PANAS data. The comprehensive analysis of facial expressions 

revealed a pronounced correlation between these expressions and the psychological states 

of drivers. Beyond fatigue, the study effectively identified other mental states like 

happiness and anxiety, particularly in driving contexts. This result highlights the critical 

role of facial expression analysis in the real-time interpretation of drivers' mental states. 

The outcomes open up promising prospects for assessing driver fatigue and other 

mental states using video recording technology. Furthermore, incorporating an AI model 

trained on extensive driving data and internal automotive conditions holds the potential 

to improve the accuracy and efficiency of these assessments. This research represents a 

significant advancement in the field by proposing an automated, innovative approach for 

processing and analyzing video data to evaluate facial states. 

However, the research faced notable challenges. One primary concern is the 

variability in facial expressions across different drivers and under diverse conditions, 

which complicates the accuracy of facial recognition. Secondly, collecting images within 

vehicles poses significant privacy concerns, necessitating careful and ethical handling of 

such data. Addressing these challenges will require integrating additional sensor 

technologies in future studies.  
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5.4. Assessment of Fatigue State by Eye Movement Analysis 

5.4.1. Research Objective 

In light of the challenges delineated in Section 5.3, this section pivots towards 

refining the methodology for assessing driver fatigue, specifically emphasizing 

integrating auxiliary sensor technologies. This strategic incorporation of additional sensor 

modalities is poised to augment fatigue detection's accuracy and efficacy significantly. 

5.4.2. Experimental Method 

In Fiscal Year 2023, our research team significantly enhanced the sensor network 

established in the previous year by integrating sophisticated eye movement analysis 

techniques [5-6]. This expansion aimed to achieve a more granular and precise 

understanding of the physiological markers of driver fatigue. We equipped the vehicles 

with state-of-the-art eye monitoring equipment to ensure comprehensive data collection. 

This setup captured real-time biosignal data and synchronized it with the existing video 

footage and automotive performance metrics.  

Figure 5-15 illustrates the detailed configuration of this enhanced sensor network. 

The upgraded sensor network incorporated a range of biosensors capable of capturing 

detailed physiological data, including heart rate variability, skin conductance, and 

advanced EEG metrics. These biosensors were carefully selected for their sensitivity and 

accuracy in detecting subtle changes in a driver's physiological state that may indicate 

fatigue. The integration of these sensors allowed for a multi-dimensional analysis of the 

drivers' physical responses under various driving conditions. 

The experimental design also included two driving scenarios, the same as the 

conditions from Section 5.1. These scenarios ranged from high-stress situations, such as 

navigating through heavy traffic, to more controlled environments, like driving on a 

predetermined route. The data collected from these experiments were subjected to 

rigorous analysis utilizing advanced algorithms and data processing techniques. This 

approach allowed for extracting insights from complex biosignal data, enabling us to 

understand the nuanced relationships between different physiological markers and driver 

fatigue. 
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5.4.3 Result Analysis 

(1) Estimation of fatigue based on driving data 

Figure 5-16 delineates the correlation between the number of driving rounds 

completed and the duration of each round. A noteworthy trend emerges from the data: 

with the progression of multiple driving rounds, there was an approximate 20% increase 

in lap time. This pattern strongly indicates a diminution in driver concentration 

attributable to fatigue, manifesting as a reduction in overall driving speed. 

Figure 5-17 graphically represents the relationship between ambient brightness 

levels and emotional changes as detected via EEG. The data illustrates a discernible 

decline in driver concentration correlating with the darkening of the roadway over 

successive driving rounds. This finding aligns with the trends observed in C1 driving data. 

In contrast, no significant decrease in attention levels was noted during driving sessions 

conducted in Paris. This differential outcome allows us to postulate that reduced lighting 

conditions adversely affect driver attentiveness, potentially exacerbating fatigue and 

diminishing concentration, particularly in nighttime driving contexts.  

 

Figure 5-15. Diagram of sensor network implemented in FY2023 
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Figure 5-16. PANAS results before and after experiment 

 

 

Figure 5-17. Driving time of rounds of Paris course 
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(2) Relation between facial expression and eye movement. 

Our study thoroughly analyzed the interrelation between facial recognition 

technology and eye-tracking data, focusing on the incidence of eye closures. Figure 5-18 

illustrates the classification of six distinct facial expression patterns identified during the 

experiment. These patterns have enabled us to deduce four primary emotional states: 

Neutral, Anxiety, Boredom, and Fatigue, emphasizing fatigue due to its relevance to 

driving-induced tiredness. 

A detailed timeline is provided in Figure 5-19, juxtaposing facial recognition results 

with those obtained from eye-tracking data. A noteworthy observation from this analysis 

is the substantial concurrence between periods characterized by the facial expression of 

fatigue and the occurrence of eye closures. This pattern suggests that eye-tracking 

technology is proficient in identifying drivers' emotional states, particularly fatigue. 

Moreover, Table 8-1 systematically enumerates the frequency of reported feelings 

of fatigue and the corresponding instances of eye closures, categorized into 5-minute 

intervals. As indicated by a low p-value (0.4) derived from the T-Test, the statistical 

analysis reinforces the robust correlation between eye movements and facial expressions. 

This finding substantiates our hypothesis that eye-tracking can effectively indicate driver 

emotion, especially in the context of fatigue detection. 

 (3) Relation between brainwave and eye movement. 

Figure 5-20 graphically demonstrates the correlation between Gamma brainwave 

activity and eye blink frequency. The data analysis in Paris revealed a distinct pattern: a 

notable decrease in Gamma brainwave activity (below the threshold of 1.0E7) 

consistently correlated with a marked increase in eye blink frequency or complete eye 

closures. This phenomenon is graphically represented below the red line in Figure 5-18. 

The observed correlation suggests that fluctuations in Gamma brainwaves are a 

significant biomarker of fatigue, particularly indicative of sleepiness. This pattern was 

especially pronounced during the latter stages of the driving sessions, aligning with 

increased driver drowsiness. Furthermore, these findings highlight the efficacy of eye-

tracking technology as a potent tool for real-time monitoring of driver behavior. By 

quantifying eye movements, eye tracking provides a robust method for assessing driver 

fatigue levels, contributing valuable insights into driver safety and performance during 

active driving scenarios. 
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Figure 5-18. Classification results in FY2022 
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Figure 5-19. Comparison between facial expression and eye movement 

 

Table 5-2. Frequency of fatigue expression and eye shut 

 

~05:00 ~10:00 ~15:00 ~20:00 ~25:00 ~30:00 ~35:00 ~40:00 ~45:00

Fatigue 1 5 1 1 4 5 3 10 9

Eye shut 2 2 4 0 3 5 6 13 0

 

Figure 5-20 Variation of Gamma wave and attention ration 
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5.5. Assessment of Fatigue State by Topological Data Analysis 

5.5.1. Research Objective 

This study embarks on a detailed comparative analysis of electroencephalogram 

(EEG) data and other pertinent physiological metrics. Utilizing the ThinkGear Asic 

Module (TGAM), raw EEG data was captured at a frequency of 512 Hz, including 

aggregated values for distinct EEG frequency bands: Delta, Theta, Alpha, Beta, and 

Gamma, calculated on a per-second basis. However, the interpretation of the relationships 

among these EEG components is complex due to the inherently dynamic and variable 

nature of EEG signals. Additionally, the reliability of EEG data is often compromised by 

susceptibility to environmental noise and disturbances. Therefore, this research aims to 

devise methodologies to authenticate the validity and accuracy of EEG data amidst noise 

interference, develop robust data processing techniques to analyze brainwave 

interrelations, and ultimately enhance the assessment of driver fatigue by integrating 

additional, reliable, cost-effective and efficient sensor modalities [5-7]. 

5.5.2. Experimental Method 

Given the complexities inherent in EEG data analysis, our study adopted an 

advanced methodology from topological data analysis: persistent homology. This 

technique, which finds its foundation in computational topology, excels in dissecting 

intricate data configurations and isolating salient features amidst chaotic datasets. 

Renowned for its ability to discern multi-scalar structures, persistent homology has been 

employed across various disciplines, including biology, data analytics, and image 

processing. This method calculates topological invariants, providing both a quantitative 

measure and a graphical interpretation of data architectures. The integration of persistent 

homology with machine learning algorithms enhances its efficacy in extracting features 

and training models, thereby offering a robust tool for comprehensive data analysis, both 

qualitative and quantitative. 

Our research mainly concentrates on the Alpha, Beta, and Gamma frequency bands 

with significant mental state analysis implications. We compare datasets across varying 

drivers, days, and driving sessions to glean insights into mental status correlations. 

The experimental framework engaged two female students from Chuo University, 

each with different driving experience levels. They navigated through diverse routes 

within the Tokyo Metropolitan Expressway and in Paris. Similar to the scenarios 

presented in Section 5.4, this variation in driving environments was intended to elicit a 
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wide range of mental and physiological responses, thereby enabling a thorough 

investigation. These experiments were executed under standardized conditions over two 

days to maintain consistency and comparability. 

5.5.3. Result Analysis 

A persistence diagram representing the three-dimensional (3D) data of the Alpha, 

Beta, and Gamma bands is illustrated in Figure 5-21. A critical observation from this 

diagram is the alignment of most data points along the X=Y axis, with deviations from 

this line signifying distinct data features. Additionally, envelope curves in Figure 5-21 

provide a macroscopic view of the data points' distribution. Notably, despite variances in 

driving skills, schedules, and dates, the envelope shapes for each lap showed similarities. 

This consistency hints at potential uniform changes occurring across laps. 

Future research will explore the EEG data more comprehensively, particularly 

investigating the correlation between EEG dynamics and driver fatigue to deepen our 

understanding of neurophysiological responses in driving scenarios. 
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Figure 5-21. Persistent homology graph of brainwaves (Alpha, Beta, and Gamma) 
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Chapter 6 

Conclusion and Future Work 

In the contemporary epoch, characterized by an increasingly aged populace and a 

surge in vehicular incidents encompassing road rage and erratic driving, the prevalence 

of these occurrences has become a matter of significant concern. These incidents are 

frequently a manifestation of the drivers' psychological dispositions, underscoring the 

imperative need for mental health interventions to bolster vehicular safety. Notably, driver 

fatigue, a critical determinant in traffic accidents, epitomizes a deterioration in mental 

acuity, thereby impairing fundamental driving competencies such as attention, reaction 

time, and decision-making capabilities. This aspect assumes heightened importance in the 

transition toward autonomous vehicles. Presently, research and methodologies 

predominantly emphasize pre-driving relaxation techniques or reactive alerts to combat 

fatigue, conspicuously overlooking the ongoing evaluation of the driver's psychological 

state as a proactive vehicular safety measure. This oversight accentuates the necessity for 

more comprehensive safety methodologies within automotive contexts. 

Our extensive research, spanning several years, has substantially contributed to 

understanding drivers' mental states, mainly focusing on fatigue and its ramifications for 

vehicular safety. The study evolved through various stages, augmenting our 

comprehension with increasing sophistication and intricacy. 

The initial phase of our inquiry entailed the establishment of an extensive sensor 

network in tandem with a high-fidelity driving simulator. The Positive and Negative 

Affect Schedule (PANAS) was employed to authenticate the precision and dependability 

of the estimations derived from sensor data. Preliminary outcomes underscored the 

feasibility of utilizing bio-signal data to evaluate drivers' mental conditions. 

We subsequently incorporated video cameras to address the challenges posed by the 

limited practicality of EEG and ECG sensors in experimental settings. This phase saw the 

integration of advanced facial recognition and body movement analytics into our sensor 

array, enriching our dataset and enhancing our insight into the interplay between 

physiological responses and distinct driving behaviors. This stage's analysis revealed 

intricate expressions of driver fatigue and other emotional states, demonstrating these 

technologies' potential for real-time driver surveillance. 

Acknowledging the sensitivity associated with implementing video cameras within 

automotive vehicles and the variability of facial expressions among individuals, we 
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augmented our approach with eye-tracking technology to monitor eye movements and 

directly estimate driver fatigue. The concluding phase of our study incorporated 

sophisticated eye movement analysis, which proved pivotal in establishing a robust 

correlation between eye movement patterns and driver fatigue. The amalgamation of this 

technology with our existing facial recognition and bio-signal data provided a more 

holistic perspective on driver fatigue. 

Looking ahead, our research endeavors to integrate Controller Area Network (CAN) 

data and wearable sensor technologies, such as smartwatches, into our assessment 

framework. This fusion is anticipated to yield a more user-centric and comprehensive 

approach to monitoring drivers' emotional states and mental conditions. We also aim to 

refine our methodologies to surmount the identified challenges, mainly focusing on 

enhancing our system's usability and privacy aspects. The ultimate objective is to develop 

an all-encompassing, efficacious plan capable of real-time monitoring and intervention, 

thereby significantly contributing to the evolution of safety measures in the automotive 

sector. These forthcoming advancements hold the potential to engender safer driving 

conditions and ameliorate overall driver well-being. 
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